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ABSTRACT
Large Language Models (LLMs) are transforming the land-
scape ofmobile intelligence. Federated Learning (FL), amethod
to preserve user data privacy, is often employed in fine-
tuning LLMs to downstream mobile tasks, i.e., FedLLM. A
vital challenge of FedLLM is the tension between LLM com-
plexity and resource constraint of mobile devices.

In response to this challenge, this work introduces FwdLLM1,
an innovative FL protocol designed to enhance the FedLLM
efficiency. The key idea of FwdLLM is to employ backprop-
agation (BP)-free training methods, requiring devices only
to execute “perturbed inferences”. Consequently, FwdLLM
delivers way better memory efficiency and time efficiency
(expedited by mobile NPUs and an expanded array of partic-
ipant devices). FwdLLM centers around three key designs: (1)
it combines BP-free training with parameter-efficient train-
ing methods, an essential way to scale the approach to the
LLM era; (2) it systematically and adaptively allocates com-
putational loads across devices, striking a careful balance
between convergence speed and accuracy; (3) it discrimina-
tively samples perturbed predictions that are more valuable
tomodel convergence. Comprehensive experiments illustrate
FwdLLM’s significant advantages over conventional methods,
including up to three orders of magnitude faster conver-
gence and a 14.6× reduction in memory footprint. Uniquely,
FwdLLM paves the way for federated billion-parameter LLMs
such as LLaMA on COTS mobile devices – a feat previously
unattained.

1 INTRODUCTION
Large Language Models (LLMs)2 such as GPTs and LLaMA
have showcased an impressive ability to handle generic
machine learning tasks [88]. As foundational models, pre-
trained LLMs can be fine-tuned for various downstream tasks
and have been applied across a broad range of mobile ap-
plications, including but not limited to question answering,
personal assistance, and data retrieval [23, 42, 85, 99, 103].

1FwdLLM can be accessed at https://github.com/UbiquitousLearning/
FwdLLM.git
2In this work, we mainly refer LLMs to transformer-based NLP models that
exceed 100M parameters.

Early efforts have been invested to adapt LLMs to mobile de-
vices while maintaining data privacy during the fine-tuning
process. Often, these efforts employ federated learning, an
approach known as FedLLM [18, 20, 21, 87, 93, 110, 112].
A salient feature of LLMs is their scalability: by incor-

porating more parameters, LLMs can continually evolve,
achieving higher accuracy or even emergent abilities [33,
36, 82, 106]. Consequently, contemporary LLMs have grown
enormously in size and are hard to be trained even on a
GPU cluster [88], not to mention mobile devices. Recent re-
search of FedLLM [20, 87, 110, 112] primarily addresses the
network issue between devices and cloud aggregator, yet
the convergence is still lengthy and being impractical for
developers. Through pilot experiments (§2.2), we identify
three key obstacles towards practical FedLLM.

• Huge memory footprint. The predominant on-device
training algorithm [22, 94] necessitates extensive memory to
store intermediate results such as activations and gradients.
Although fine-tuning could omit most gradients with layers
frozen, activations continue to demand considerable memory,
often exceeding device capabilities. For example, 3.9 GB is
required for RoBERTa-large. It results in extra I/O time to
swap in/out data [49, 73] andmakes the training task a highly
likely victim of mobile OS’s low memory killer [9]; in either
way, the FedLLM convergence is significantly slowed down.

• Incompatible with mobile accelerators.Mobile SoCs
are often furnished with powerful, fast-evolving DNN ac-
celerators (NPUs), e.g., Google Edge TPU and Qualcomm
Hexagon that are up to 30× faster than CPUs. Regrettably,
on-device training is unsupported on nearly all mobile NPUs,
since they are tailored for inference rather than training, and
thus lack the requisite support for training-specific opera-
tions like SELECT_OPS [1] and dynamic gradient updating.

• Limited device scalability. In FL, only dozens of de-
vices participate in training simtaneously, even when mil-
lions of IoT/smartphone devices are available . For instance,
Google’s deployed FL system samples merely around 1% of
training-ready devices per round [8], because even a small
number of devices can saturate learning performance, mean-
ing additional devices do not further expedite convergence.
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This work leverages a crucial observation: all above issues
can be somehow traced to the use of backpropagation-based
(termed BP) training algorithm [48, 97] on devices (details
in §2.2). This prompts an essential question: is it feasible to
replace backpropagation with a more mobile-friendly training
algorithm, thereby reinvigorating the FedLLM protocol?

FwdLLM: trainingwith “perturbed inferences”.We thereby
present FwdLLM, the first-of-its-kind system that enables prac-
tical and scalable FedLLM through BP-free training algo-
rithm. Instead of calculating one exact gradient using BP,
FwdLLM asks each device to perform perturbed inference: ap-
plying a few self-generated small perturbations to the model
weights, and compare how their prediction output deviate
from the ground truth labels with the unmodified model.
Intuitively, if a perturbation makes the model more accurate
(output closer to labels), the perturbation is likely to direct the
model to global optima. In §3.2, we detail how such intuition
leads to a mathmatical form to obtain a BP-free gradient that
is an unbiased estimator of the true gradient. Such BP-free
training algorithms [13, 31, 59, 78, 83] have been researched
by the ML community for decades but seize very few atten-
tions. Relying on only inferences, the computation on de-
vices is much more memory efficient and NPU-compatible;
more devices also scale to faster convergence to allow more
perturbed inferences simltaneously.
While the idea is intriguing, FwdLLM’s design confronts

three crucial challenges. (i) BP-freemethods have only shown
comparable performance with BP on tiny models like LeNet,
as they demand proportionally increased perturbed infer-
ences with its model size [13, 71, 78]. (ii) How many per-
turbed inferences are good enough before proceeding to the
next round? It is a vital factor with strong impact on the
training convergence. Using a fixed number perturbed in-
ferences sees up to 3× longer training delay as compared to
the final design of FwdLLM (§3.3). There is no silver-bullet
setting that results in the fastest convergence under each
condition. Rather, the optimal setting depends on the spe-
cific tasks and models; it also needs to be adapted on the
fly even within the same training session, as the favorable
setting drifts over time depending on the model’s learning
progress. (iii) The convergence speed of FwdLLM hinges on
the perturbations generated. Contrary to most prior BP-free
literature, which randomly samples perturbations from clas-
sic distributions [13, 30, 67], we discover that this method
is often sub-optimal. Our empirical results in §3.4 shows
that most randomly sampled perturbations are of low value
(orthogonal to the true gradient) to the convergence.

FwdLLM addresses above challenges with three key designs.
First, FwdLLM integrates the perturbed inferences with

parameter-efficient fine-tuning (PEFT)methods like LoRa [40]
and Adapter [75]. It is based on a crucial observation that the

training complexity of BP-free methods scales with its train-
able parameters instead of total parameters, aligning well
with PEFTs that necessitate minimal parameters for fine-
tuning. In fact, the larger the LLM, the fewer PEFT trainable
parameters required [34, 40, 58, 75]. While BP-free training
and PEFT are priorly known and have been recently applied
to FL in a few literature [20, 30, 71, 112], we are the first
to identify their significance in FedLLM and investigate the
system implications when they are orchestrated.
Second, FwdLLM employs an automatic and systematic

strategy to manage the global perturbation inferences for
developers. Unlike traditional FL protocols [8, 54, 69] that
use a static, user-defined metric to control the computing
loads on devices, FwdLLM augments the aggregator with an
on-the-fly monitor that controls the timing to aggregate
the gradients and proceed to the next round. Intuitively,
as model approaches convergence, BP-free methods need
more perturbations to accurately estimate the convergence
direction. FwdLLM leverages a crucial heuristic that the vari-
ance across the BP-free gradients uploaded from different
devices monotonically increases as model converges, which
harmoniously paces with the number of perturbed infer-
ences demanded for fast and stable convergence. Therefore,
FwdLLM proposes a variance-controlled pacing mechanism
that the perturbed inferences stops only when the variance
observed on aggregator is smaller than a threshold. FwdLLM
also judiciously prioritizes different means (by adjusting par-
ticipant devices, training data size, and perturbation number)
to adapt global-PS to maximize the efficiency.
Third, FwdLLM introduces a discriminative perturbation

sampling method that generates perturbations more likely to
contribute significantly to convergence. Concretely, FwdLLM
asks devices to bypass the computing of low-value perturba-
tions, i.e., those with nearly orthogonal convergence direc-
tion with the true gradients. To estimate the true gradients
that are not known before aggregated on clouds, FwdLLM
leverages the opportunity that the gradients direction changes
smoothly during FL – an observation also exploited in prior
FL literature [56, 95]. Thereby, the server always pre-computes
the cosine similarities between the perturbations generated
and the computed BP-free gradients of the previous round.
The perturbations with small similarity will be filtered out
and not computed by the devices.

We have implemented FwdLLM and evaluated it on 5 typical
transformer-basedmodels: ALBERT-base (0.01B), DistilBERT-
base (0.07B), BERT-base (0.1B), RoBERTa-large (0.3B), and
LLaMA (7B) and 4 classic NLP tasks (both discriminative and
generative). The on-device training is profiled on Google
Pixel 7 Pro and Jetson TX2. The results demonstrate FwdLLM’s
impressive performance: compared to full-model fine-tuning,
FwdLLM reduces the training time from 10.9–97.9 hours to
0.2–0.8 hours (up to 217.3× reduction); compared to more
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competitive baselines enhanced by different PEFT methods,
FwdLLM still delivers 2.0×–93.4× speedup (10.6× on average).
FwdLLM also reduces the memory footprint by up to 14.6×
and 11.5× compared to them, respectively. Through orches-
tration with quantization (INT4), for the first time FwdLLM
enables fine-tuning a billion-parameter model like LLaMA
over COTS smartphones within only 10 minutes. The ab-
lation study also shows the significance of FwdLLM’s key
designs in planning and manipulating perturbations.

Contributions In this work, we introduce a novel frame-
work that facilitates practical and efficient federated LLM
fine-tuning. This is achieved by using BP-free training al-
gorithm. The framework, denoted as FwdLLM, innovatively
integrates two new techniques that adaptively schedule the
number of perturbations to be examined and selectively pro-
duce them to enhance their utility. Extensive experiments
demonstrate that FwdLLM yields substantial improvements
over existing baselines. Moreover, FwdLLM serves to unify the
pathway of on-device inference and training. Rather than
viewing these as two separate research domains that neces-
sitate distinct methods and optimizations, FwdLLM enables
researchers in mobile AI systems and hardware to concen-
trate on optimizing on-device inference. This focus, in turn,
leads to more efficient federated learning processes.

2 BACKGROUND AND MOTIVATIONS
2.1 Federated Fine-tuning of LLMs
Large language model has been an revolutionary technique
for its superior performance in serving generic, complex, and
few-shot ML tasks. Training LLMs typically includes two
crucial steps: (i) pre-training that endows the models with
generic, rich knowledge of images/languages/etc, which re-
quires large amounts of public training datasets and comput-
ing devices; (ii) fine-tuning that adapts the pre-trained mod-
els for various downstream tasks, which relies on domain-
specific, privacy-sensitive data. Towards a privacy-friendly
LLM training pipeline, there is a trend to combine LLM fine-
tuning with federated learning, e.g., FedLLM [20, 24, 110].

We are at very early stage towards practical FedLLM. The
gap between the tight resource constraint of edge devices and
the extensive resource demand of on-device LLM training is
huge, as demonstrated in both prior studies [17, 22, 94, 101,
104] and the following experiments. Recent attempts incorpo-
rate parameter-efficient fine-tuning techniques (LoRA [40],
adapters [75], and prompt tuning [58]) into FedLLM and see
significant improvements in saving the network traffic be-
tween devices and aggregator. Yet they do not fully address
many other issues such as excessive memory footprint.
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Figure 1: Peak memory footprint of different training
methods and inference. Batch size: 8.

Weights Activations Gradients Total
FT-full 354.3M (100%) 1.3 5.1 1.3 7.7
FT-adapter 3.2M (9.0%) 1.3 3.9 0.02 5.2
FT-bitfit 0.3M (0.8%) 1.3 3.8 0.009 5.1
FT-lora 0.8M (2.2%) 1.3 3.8 0.01 5.1
Inference / 1.3 0.2 0 1.5

Algorithms Trainable
Parameters

Memory Footprint (GB)

Table 1: The breakdown of memory footprint. Model:
RoBERTa-large; batch size: 8. “FT”: finetuning. “Activa-
tions” contain the activations for backward-gradient
computation and optimizer states.

2.2 Preliminary Experiments of FedLLM
In this subsection, we reveal three crucial issues faced by
FedLLM through pilot experiments.

• FedLLM is hindered by the memory wall. Figure 1
shows the peak memory usage in training various LLMs
with a relatively small batch size (8). The observed memory
expense is often unaffordable for edge devices, e.g., more
than 7.7GBs for RoBERTa-large and 2.5GBs for ALBERT-base,
while the typical mobile devices possess only 4GBs–12GBs
DRAM. More severely, on smartphones, even only a small
portion of that memory could be used for training tasks to
not compromise user experience [17, 47, 53]. In contrast,
inference consumes much less memory (e.g., less than 1GB)
as it does not need to hold the intermediate computing results
in memory as backpropagation does, which linearly scales
up with batch size and sequence length.
PEFTs like adapter and bitfit methods cannot fundamen-

tally reduce memory footprint as illustrated in Figure 1. They
bring only 21.2%-35.2% memory savings across different
models, which is inadequate to fit certain large models like
ROBERTa-large or LLaMA into real mobile devices. We then
break down the memory consumption of ROBERTa-large
and summarize the results in Table 1. It explains why reduc-
ing trainable parameters cannot bring as significant memory
saving: the activations generated during forward pass take
up most of the memory usage, which cannot be eliminated
even if the weights are not to be updated.

• FedLLM’s inability to leverage powerful mobile ac-
celerators.Modernmobile devices frequently come equipped
with high-end NN accelerators. As Moore’s Law approaches
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Figure 2: Performance evolvement of mobile NPU.
Numbers are from AI Benchmark [2].

Model Training Time (sec) Inference Time (sec)
CPU GPU NPU CPU GPU NPU

ALBERT 17.5 6.7 1.5 0.3
DistilBERT-base 6.9 3.4 0.8 0.2
BERT-base 14.0 N/A 6.9 0.8 0.3
RoBERTa-large ∗28.1 11.7 2.9 0.8
LLaMA-7B (INT4) N/A 22.1 N/A N/A

Table 2: Per-batch (BS=8) training and inference time
on Google Pixel 7 Pro. Library: llama.cpp for LLaMA
and TFLite for others. “N/A”: not supported. * is emu-
lated in an infinite memory environment.

its limits, ASIC-based accelerators offer a promising path-
way to sustain the growth in device capability in tandem
with increasing model complexity. Figure 2 summarizes the
speedup achieved by NPUs over CPUs for three popular mo-
bile chip series: Qualcomm Snapdragon (Hexagon), Google
Pixels (Tensor TPU), and MediaTek (Dimensity). The find-
ings are compelling: the NPU speedup rate is steadily rising
and reaches nearly 30× on the recent Snapdragon 8+ Gen
1 chip. This underscores the imperative to utilize NPUs for
efficient on-device DNN execution.
Nevertheless, on-device training can hardly benefit from

mobile NPUs. In Table 2, our measurements reveal the degree
to which NPUs can accelerate DNN inference/training on the
Google Pixel 7 Pro. While mobile NPUs significantly reduce
inference latency compared to mobile CPUs and GPUs, they
offer no support for DNN training. The reason behind this
limitation is clear: these NPUs are tailored for inference tasks
and thus lack the requisite support for backpropagation-
specific operators such as BroadcastGradient, ReluGrad,
StridedSliceGrad, and others [41]. Recent work [101] has
enabled DNN training on Snapdragon Hexagon DSP, but
this approach (i) compromises model accuracy due to lower
data precision, and (ii) faces scalability challenges with other
more proprietary NPUs, such as those found in Google Pixels
and Huawei smartphones.

• FedLLM has low device scalability. Backpropagation-
based FL struggles to enhance its convergence speed with
more participant devices. As depicted in Figure 3, involving
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Figure 3: Backpropagation-based FL has low device
scalability.

Literature Venue Year Total Devices Devices per Round
Hermes [50] MobiCom 2021 2,414 20 (0.8%)
PyramidFL [52] MobiCom 2022 342,477 50 (0.01%)
FedAdapter [20] MobiCom 2023 1,000 15 (0.15%)
FedBalancer [81] MobiSys 2022 915 100 (10.9%)
Oort [45] OSDI 2021 1,600,000 100 (0.006%)
FedNLP [107] NAACL 2022 100 10 (10%)
C2A [43] ACL 2023 100 25 (25%)
GradMA [65] CVPR 2023 100 50 (50%)
FedScale [44] ICML 2022 1,660,820 100 (0.006%)
FjORD [37] NeurIPS 2021 3,400 10 (0.3%)

Table 3: Prior FL literature (mobile/system/AI) use a
small ratio of devices in experiments. Maximal num-
bers are selected if many datasets are used.

merely tens of devices per round leads to the saturation
of convergence speed, regardless of the utilization of PEFT
techniques. Escalating the device count to 100 results in only
marginal improvements; for example, it yields just a 1.04×
acceleration to reach an accuracy of 86% (with adapters).
In real-world scenarios, there could be easily more than

millions devices, such as smartphones and IoTs, that are capa-
ble of contributing local data and computing resources. After
filtering out devices in non-optimal conditions, such as those
with low battery or high utilization, the remaining training-
available device number still easily exceeds hundreds. For
instance, in Google’s deployed FL system [8], around 10,000
devices are simultaneously available for local training. The
failure to scale to a larger number of idle devices seriously
constrains the rate at which the model can converge. As
indicated in Table 3, even when millions of devices are avail-
able, the existing literature on FL uniformly adopts the de-
fault experimental setting of using no more than 100 devices.
The root cause of this scalability issue can be attributed
to backpropagation-based optimizers [33, 36, 106] and can
hardly be addressed at systems aspect.

3 FWDLLM DESIGN
3.1 Overview
FwdLLM is a cloud-device framework that aims to enable
practical federated fine-tuning of LLMs acrossmobile devices.
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The key idea is to abandon backpropagation-based gradient
descent, but uses “perturbed inference” that poses much less
memory/compute pressure on devices and can be accelerated
by ubiquitous mobile NN accelerators.
Simplified workflow As shown in Figure 4, FwdLLM em-
ploys a similar parameter-server architecture as traditional
FedAvg protocol but mainly differs on the local computation.
❶ Per global round, the aggregator first sends the latest LLM
updates (only for the trainable weights, denoted asM) and
random seeds to each available client. ❷ Each client discrim-
inatively samples 𝑁 trainable weights perturbations based
on the random seeds, and applies the perturbations to M
to generate 𝑁 perturbed LLMs (denoted as M𝑖=1..𝑁 ) (§3.4).
A perturbation is essentially a vector with the same size as
trainable parameter number that is sampled from a uniform
distribution. ❸ The client then performs a forward pass on
eachM𝑖 as well asM with local training data, from which it
gets a forward gradient by comparing their output difference
(§3.2). ❹ Forward gradients are validated by the server (§3.3)
to meet the variance-controlled pace. Finally, ❺ the clients
upload the validated forward gradients to the aggregator,
where ❻ the gradients from different clients are aggregated
and applied to M. The above steps repeat till convergence.
FwdLLM’s advantages by design. (1) FwdLLM is computation-
ally efficient. For each client, calculating a forward gradient is
equivalent to executing inferences twice (i.e., 𝑓 (𝜃 +ℎ · 𝑣) and
𝑓 (𝜃 )), making its execution on NPU 19.5–27.5× faster than
computing one backward gradient on a CPU, as previously
demonstrated in Table 2. (2) FwdLLM is memory-efficient, as
it does not require storage of the intermediate activations
generated during the forward pass, which contribute to the
majority of the memory footprint, as outlined in §2.2. The
perturbation weights are parameter-efficient (details in §3.2),
and the perturbed LLM can be generated sequentially, with

each being immediately released once its inference is com-
pleted (Figure 5). Thus, the peakmemory footprint of FwdLLM
can be approximated as 𝑠𝑖𝑧𝑒_𝑜 𝑓 (M) + 2 · 𝑡𝑟𝑎𝑖𝑛𝑎𝑏𝑙𝑒_𝑝𝑎𝑟𝑎𝑚.
(3) FwdLLM is highly scalable with respect to client numbers.
As more clients compute forward gradients simultaneously,
the aggregated gradient becomes closer to the real gradi-
ent, contributing to faster and more accurate convergence.
Figure 6b illustrates that the continuous addition of pertur-
bations enables the forward gradients to estimate the true
gradient with greater precision and stability.
Implications onprivacy From the cloud perspective, clients
iteratively upload forward gradients, which are unbiased
estimations of the true gradients, mirroring traditional FL
methods based on backpropagation. Consequently, FwdLLM
can be seamlessly integrated with common FL privacy en-
hancements, including differential privacy [12, 29], secure
aggregation [30], and homomorphic encryption [109].
Unique challenges introduced by BP-free training First,
BP-free training is not a panacea for all models. Existing
studies [13, 71, 78] primarily validate its utility for diminu-
tive models (a few million bytes), which are 1–3 orders of
magnitude smaller than standard LLMs that we target. (2)
The quantity of perturbations required to calculate a single
forward gradient plays a pivotal role in determining conver-
gence performance (elaborated in §3.3). However, this is not
trivial to ascertain beforehand and has not been touched in
prior literature [13, 30, 71, 78]. (3) The convergence speed of
BP-free training is hampered by random perturbation gener-
ation [13, 78]. In following subsections, we will present three
novel techniques to tackle those challenges, respectively.

3.2 Parameter-Efficient BP-Free FedLLM
Forward gradient The forward gradient method is selected
as our BP-free algorithm because it is based solely on the
directional derivative, which can be computed both precisely
and efficiently via the forward pass [13]. Formally, to com-
pute the directional derivatives of deep learning functions,
denoted as 𝑓 , with respect to a vector 𝑣 at a point 𝜃 , the
following equation can be used [48, 79]:

∇𝑣 𝑓 (𝜃 ) = lim
ℎ→0

𝑓 (𝜃 + ℎ · 𝑣) − 𝑓 (𝜃 )
ℎ

, (1)

where 𝑣 ∈ 𝑁 (0, 1) represents the weight perturbations, and
∇𝑣 𝑓 (𝜃 ) is the directional derivative of 𝑓 at the model weight
point 𝜃 in the direction 𝑣 [25]. In simpler terms, ∇𝑣 𝑓 (𝜃 ) sig-
nifies the slope of 𝑓 in the direction of 𝑣 . The direction of
steepest ascent can be identified using the gradient ∇𝑓 (𝜃 ).
Nevertheless, determining the gradient ∇𝑓 (𝜃 ) can be compu-
tationally demanding, as it necessitates both a forward pass
and a backward pass [13], which we have empirically vali-
dated in Section 2. As an alternative, we leverage the forward
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gradient 𝑔𝑣 , which is more cost-effective to compute:

𝑔𝑣 (𝜃 ) := ∇𝑣 𝑓 (𝜃 )𝑣 = (∇𝑓 (𝜃 ) · 𝑣)𝑣, (2)

where 𝑔𝑣 (𝜃 ) is established as an unbiased estimator of the
gradient ∇𝑓 (𝜃 ) [13].

Using Figure 9a as an illustrative example, we demonstrate
the computation of gradients for the function 𝑧 = 2(𝑥2+𝑦2) at
the point (0.5, 0.5). We can sample 𝑛 direction vectors 𝑣 from
𝑁 (0, 1) and compute 𝑔𝑣 (𝜃 ) for each 𝑣 . By taking the average
of these forward gradients 𝑔𝑣 (𝜃 ), we obtain an estimator for
the true (backward) gradient ∇𝑓 (𝜃 ).
Forward gradient is not a panacea for all models. Al-
though forward gradients have been proposed in previous
literature [11, 13, 35, 66, 71, 84], their practical application
has been limited, primarily due to the enormous demands on
data and computation. Specifically, the requirements (i.e., per-
turbations per batch) grow exponentially with the parameter
size. As shown in Figure 6, with the increase of parameter
size, the generated forward gradients deviate significantly
from the true gradients. Thus, to obtain reliable forward
gradients, the required perturbations per batch increase ex-
ponentially with the parameter size. Prior forward gradient
research has largely been restricted to evaluations on small-
scale models such as LeNet and WideResNet [13, 71, 78].
Parameter-efficient BP-free learning To deal with this
issue, FwdLLM exploits a key observation that the BP-free
training complexity is primarily related to the trainable pa-
rameter size, rather than the total size. This observation is
intuitively consistent with the mathematical foundation ex-
pressed as 𝑓 (𝜃 |Θ, 𝑥), where the pre-trained model weight
Θ and input 𝑥 remain fixed, with only the PEFT weights 𝜃
being tunable. Fortunately, pre-trained LLMs have accumu-
lated rich generic knowledge, thus requiring only a small
number of new parameters to adapt to various downstream
tasks. Therefore, for the first time, FwdLLM integrates BP-free
training with PEFT methods.

In general, FwdLLM is compatible with various PEFT meth-
ods [34, 40, 55, 61, 64, 74, 86, 108] as demonstrated in our
extensive offline experiments. We introduce an offline PEFT
profiler designed to automatically identify the most suitable
PEFT method for FwdLLM, using public dataset on clouds. A
critical factor influencing FwdLLM performance is the num-
ber of trainable parameters. Consequently, we develope a
similarity-aware profile, aiming to identify the optimal PEFT
method that maximizes parameter savings while minimizing
performance degradation. Specifically, we train the model
using the original parameters and various PEFT methods
for a single iteration. Subsequently, we compute the simi-
larity between the forward gradients and the BP gradients.
This similarity is then utilized to gauge the efficacy of each
PEFT method. In general, larger LLMs are conducive to more
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Figure 6: Effectiveness of forward gradients. (a) In-
creasedmodel parametersmake the generated forward
gradient unreliable. (b) Adding perturbations could
make the forward gradient computed more similar to
gold gradients.
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aggressive PEFT methods, like BitFit [108] and LoRa [40],
which yield fewer trainable parameters.

3.3 Var.-controlled Perturbation Pacing
Key trade-off between accuracy and cost: In the design
of FwdLLM, we identify a crucial trade-off between the rate of
model convergence and the computational cost imposed on
devices. Specifically, evaluating more perturbations leads to
a more accurate forward gradient but also increases the in-
ference cost. We introduce a new metric, global perturbation
size (global-PS), defined as the total perturbations aggre-
gated across all clients per iteration. The success of FwdLLM
greatly depends on choosing an appropriate global-PS, a
topic that has not been previously explored in studies on
forward gradient [13, 30, 78].
Adaptation of the global-PS on the fly: There is no
universal global-PS setting that can optimize both accuracy
and cost across varying scenarios. As illustrated in Figure 7,
the optimal global-PS configuration changes throughout
the training process, with FwdLLM favoring a monotonically
increasing global-PS. For example, in the early training
stages of DistilBERT on AGNEWS, the best global-PS is
only 3 perturbations per client to reach 80% relative accuracy
to convergence, while achieving 99% accuracy requires a
global-PS of 50, leading to a 16.7× higher computation cost.
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Systematic pacing strategy based on gradient variance:
Requiring developers to manually control global-PS could
be complex, as configurations vary across different mod-
els and datasets. Instead, FwdLLM offers an automatic and
systematic strategy to manage the global-PS parameter,
based on the observation that the numerical variance across
the forward gradients uploaded by clients increases as the
model approaches convergence. The variance is defined as
D(𝑔) = ∥ 1

2
[
(𝑔1 − 𝑔)2 + (𝑔2 − 𝑔)2] ∥, where 𝑔1 and 𝑔2 denote

the means of the first and second halves of the forward
gradients, respectively, and 𝑔 denotes the mean of all the for-
ward gradients. After 1500 training steps, we observed that
this variance escalated from 0.078 to 1.182, marking a 15.2×
increase. Such increased variance may necessitate more per-
turbations to accurately estimate the real gradient. FwdLLM
simply uses a predefined variance threshold that must be
met before aggregating gradients across devices, with the
threshold being the only hyperparameter to tune. An empiri-
cally selected range of 0.1–0.5 has been observed to perform
well across various models and datasets.
Prioritizingmethods to adapt global-PS: The global-PS
can be increased through three methods: (1) involving more
devices; (2) having each device testmore perturbations. FwdLLM
first prioritizes adding more devices, as concurrent compu-
tation facilitates fast convergence. Once device availability
reaches its maximum, FwdLLM turns to the second method,
asking clients to test more perturbations, for two reasons: (i)
perturbations can be quickly and infinitely generated, and
(ii) the result of the original LLM (𝑓 (𝑥)) can be reused when
calculating the directional derivatives on multiple pertur-
bations (𝑓 (𝑥 + 𝑣) and 𝑓 (𝑥)), thereby reducing the required
forward propagations from 2 ∗ 𝑁 to 𝑁 + 1.
Validating-computing pipeline: FwdLLM meticulously de-
signs a pacing pipeline to validate incoming gradients. The
primary principle is to ensure uninterrupted local forward
gradient computations. After transmitting the forward gra-
dients to the cloud aggregator, clients proceed to compute
the forward gradients for the succeeding perturbation. Upon
accumulating sufficient forward gradients to surpass the vari-
ance threshold, the aggregator instructs the client to halt
forward gradient computations. It then aggregates the re-
ceived forward gradients and dispatches the updated model
to the client. This streamlined process guarantees timely
reception of up-to-date pacing information by the server,
eliminating futile waiting times for client feedback. Note
that the validation step on cloud aggregator is lightweight,
e.g., less than 10ms in our experiment setup.

3.4 Discriminative Perturbation Sampling
The convergence speed of FwdLLM primarily hinges on the
perturbations generated before training. Contrary to most
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Figure 9: Most of the gradients are nearly orthogonal
to target gradients thus contributing little.

prior forward-gradient literature, which randomly samples
perturbations from classic distributions such as Gaussian
functions [13, 30, 67], we discover that this method is of-
ten sub-optimal. FwdLLM instead employs a discriminative
approach, selectively sampling perturbations that are more
likely to contribute larger gradients to the model’s convergence.
Minimal contribution from most forward gradients:
Specifically, two randomly generated vectors in high dimen-
sions could be orthogonal [28, 89, 92]. Recall that our for-
ward gradient is calculated via 𝑔𝑣 (𝜃 ) := ∇𝑣 𝑓 (𝜃 )𝑣 , where
∇𝑣 𝑓 (𝜃 ) = ∇𝑓 (𝜃 ) · 𝑣 is the dot product of the gradient vector
∇𝑓 (𝜃 ) and the perturbation vector 𝑣 . Figure 9b shows our
analysis of 10,000 perturbations generated while training Dis-
tilBERT on AGNEWS. We find that the majority have cosine
similarity with the gradient vector ∇𝑓 (𝜃 ) near zero; specif-
ically, over 60% have a similarity less than 0.03, and they
collectively contribute less than 29.6% of the final forward
gradients. These perturbations contribute minimal forward
gradient to model convergence.
Similarity-aware discriminative sampling: We propose
a strategy to manipulate the perturbation generation pro-
cess, making it more conducive to convergence. Figure 9a
illustrates that when perturbation 𝑣 is near orthogonal to
gradient ∇𝑓 (𝜃 ), the resulting forward gradients 𝑔𝑣 (𝜃 ) (shal-
lower red) contribute less. Based on this observation, we
can select perturbations exhibiting high cosine similarity
with the gradient vector ∇𝑓 (𝜃 ). This technique eliminates
the need to compute negligible contributions from certain
perturbations. Our methodology leverages the opportunity
that the gradients direction changes smoothly during FL –
an observation also exploited in prior FL literature [56, 95].
Therefore, it’s sufficient to compute the cosine similarities
only between the perturbations and the forward gradients
from the preceding round. For practical implementation, per-
turbation manipulation computations are outsourced to the
cloud. The cloud first generates a set of random seeds, fil-
tering out perturbations with low cosine similarities to the
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Models Arch. Params. PEFT Infer. Libs
ALBERT-base [46] Encoder-only 12M BitFit TFLite [5]
DistilBERT-base [80] Encoder-only 66M Adapter TFLite [5]
BERT-base [27] Encoder-only 110M Bitfit TFLite [5]
RoBERTa-large [63] Encoder-only 340M Bitfit TFLite [5]
LLaMA [88] Decoder-only 7B LoRA llama.cpp [6]

Table 4: Tested models using PyTorch on TX2.

prior round’s forward gradients. The resultant seeds are then
dispatched to clients for local perturbation generation.

4 IMPLEMENTATION AND SETUPS
FwdLLM prototype We have fully implemented the FwdLLM
prototype atop FedNLP [107], one of the state-of-the-art
frameworks to develop and evaluate FL methods on NLP
tasks. There are two primary ways to implement forward
gradients: numerical differentiation and analytical differen-
tiation. We use the former as it is almost identical to for-
ward inference. We therefore implement it with functorch li-
brary [3]. For various PEFTmethods: adapter is implemented
with AdapterHub [75], a library that facilitates the integra-
tion of different pre-trained adapters for downstream tasks;
LoRa and BitFit are implemented by ourselves. The quantized
LLaMA training is based on AutoGPTQ library [4].
Models We evaluate FwdLLM mainly on five popular LLMs,
as shown in Table 4. Four of them are BERT-like models
based on transformer encoders: (1) ALBERT-base (12M) [46];
(2) DistilBERT-base (66M) [80]; (3) BERT-base (110M) [27]; (4)
RoBERT-large (340M) [63]. Those fourmodels are extensively
used in prior FedNLP research [19, 20, 107]. Apart from that,
we also evaluate FwdLLM on the SoTA open-sourced genera-
tive language model (5) LLaMA-7B (INT4) [88]. To hold the
whole LLaMA model in memory, we quantize it to INT4 for-
mat using GPTQ [32]. As far as we know, FwdLLM is the first
attempt to apply federated learning to a billion-size models.
FwdLLM selects different PEFT methods for different mod-
els with its offline profiler presented in §3.2: Adapter [75]
for DistilBERT; LoRA [40] for LLaMA; and BitFit [108] for
others. The pre-trained weights of above models are from
Huggingface [98].
Datasets We experiment with four popular NLP datasets: (1)
AGNEWS [111] is a news classification dataset with 4 classes.
The number of training samples for each class is 30K and test-
ing 1.9K. (2) YAHOO [111] is a topic classification dataset with
10 categories. Each category contains 140K training samples
and 5,000 testing samples. (3) YELP-Polarity (YELP-P) [111]
predicts a polarity label based on restaurant reviews. The
number of each polarity is 280K/19K for training/testing.
(4) SQuAD-v1.1 (SQUAD) [77] is a commonly used version
of stanford question answering dataset. By default, we uni-
formly divide the datasets into 10 for Squad, 1,000 clients for

AGNEWS and YELP-P, 10,000 clients for YAHOO. For non-
iid settings, we follow prior literatures [20, 107] to divide
datasets into skewed label distribution.
Hardware As prior FL literature [45, 50, 52, 107], our ex-
periments are carried out in an semi-emulation manner on
two GPU servers each with 8 × NVIDIA A100. The on-
device training time is obtained on two popular edge de-
vices: (1) Google Pixel 7 Pro (Pixel) is a popular mobile
phones that is equipped with a Google Tensor G2 TPU, a
Mali-G710 GPU and a Octa-core CPU. It runs Android 13 OS.
We use TFLite [5] to train the four BERT-variant models and
llamap.cpp [6] to run inference with LLaMA. The inference
and training speed is previously illustrated in Table 2. (2) Jet-
son TX2 (TX2) [7] is a widely used edge board equipped with
a 256-core NVIDIA Pascal GPU and a Dual-Core NVIDIA
Denver 2 64-Bit CPU. We use PyTorch [72] for on-device
inference and training. Note that Jetson TX2 has no NPU
and is not the primary target platform of FwdLLM.
Metrics We mainly report time-to-accuracy metric and on-
device runtime cost (memory, network, energy). The target
convergence accuracy is 0.88 for AGNEWS, 0.65 for YAHOO
and 0.82 for YELP-P, the same as prior work [20, 107, 111]
Baselines We compare FwdLLM to the following baselines:
(1) Full-FT always fine-tunes the whole model [107]. (2)
Adapter tuning (Adapter) introduces a small tunable mod-
ule between transformer layers and freeze other parame-
ters [39, 75]. (3) Bias tuning (BitFit) only tunes bias of each
layer in the LLM [108]. (4) FedAdapter is the SoTA FedNLP
fine-tuning framework that incorporates adapter tuning with
layer freezing techniques [107], along with a progressive
training paradigm to identify the optimal adapter configura-
tion automatically [20]. All baselines use BP-based training;
thus, they are limited to using smartphone CPUs, as previ-
ously discussed in Section 2.2. In contrast, FwdLLM can also
utilize mobile GPUs and NPUs. A recent work [101] ports
training to mobile NPU, yet does not support transformer
models.
FL settings Unless otherwise stated, FwdLLM and all base-
lines select 100 clients per round following prior work [20, 37,
50, 107]. FwdLLM and all baselines use the same set of hyper-
parameters as prior work [20, 107]: local training epoch as
1; mini-batch size as 8; learning rate as 0.01; max sequence
length as 64 for AGNEWS and 256 for others. The default FL
aggregating algorithm is FedSGD [69] as later experiments
will show that FedAVG [8] underperforms FedSGD due to
the asymmetric compute/network cost. Network bandwidth
is set to 10Mbps by default as prior literature [19, 20, 107].
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5 EVALUATION
5.1 Convergence Performance on

Sub-billion-sized Models
We first study the performance of FwdLLM on the four BERT-
like models that have less than 1B parameters and are exten-
sively used in prior FedNLP research [19–21, 107].
FwdLLM achieves significant improvements with mo-
bile NPU. Table 5 summarizes the convergence time and
Figure 10 illustrates the convergence process under the de-
fault setting. Specifically, we increase the involved client
count to 1000 for some hard datasets and large model, so
as to reach a higher performance. To reach the target accu-
racy, FwdLLM outperforms Full-FT by an significant factor of
132.7×. Compared with parameter-efficient fine-tuning base-
line and the state-of-the-art federated fine-tuning system
FedAdapter [20], FwdLLM can still beat them non-trivially
(9.6× on average). The significant boost in performance
partly stems from FwdLLM’s capacity to harness the powerful
NPU, accelerating the training process. Unique to FwdLLM
is its dependency solely on the forward pass, in contrast to
other baselines that require the backward pass — a function
not yet compatible with NPUs, as elaborated in Section 2.2.
Intriguingly, our research reveals that, contrary to prior

FL scenarios [20, 50, 52], FedLLM with PEFT methods favors
FedSGD towards faster convergence compared to FedAVG.
As detailed in Table 5, FedSGD using adapter leads to up
to 3.3× faster convergence than FedAVG on the four tested
models. This can be rationalized by understanding the in-
herent design of FedAVG. Primarily devised to address the
communication overhead in federated learning, the benefits
of FedAVG become muted, as PEFT methods have already
significantly mitigated these overheads.
FwdLLM is versatile across different processors and hard-
ware boards. Though designed primarily for NPUs, FwdLLM
showcases commendable performance across multiple pro-
cessors within the Google Pixel. On the GPU, it is up to 92.4×
faster than the Full-FT, and it consistently outperforms sev-
eral strong baselines, achieving speedup of 5.6× on average.
Remarkably, only FwdLLM can exploit both the GPU and NPU
in the Google Pixel, while other baselines are confined to the
CPU, as illustrated in Table 2. Table 5 further showcases that,
even on the Google Pixel’s CPU, FwdLLM can still operate
up to 21.6× faster than Full-FT When compared to more
advanced baselines, FwdLLM outperforms 41.6% of them and
matches the remainder. These results suggest that the de-
sign of FwdLLM is not solely dependent on NPUs; it’s equally
effective on other processors.

Consistently, FwdLLM surpasses other baselines regardless
of the device or its underlying processor. As evidenced in
Figure 11, when tested on the heterogeneous hardware envi-
ronment, FwdLLM maintains its lead. It stuck to the straggler

latency. Its convergence time showcases significant improve-
ments, ranging from 12.2 to 3143.7× faster than Full-FT. Fur-
thermore, it beats strong baselines in most of the cases, deliv-
ering speeds up to 39.1× faster. The advantage stems from the
reality that a forward pass is inherently 3-5× quicker than a
backward pass [13, 15]. The numerical gap between forward
and backward pass are highly program dependent, which
will be exaggerated in efficient inference engines [57, 62, 91].
Apart from that, our global cherry-picked forward gradients,
refined through discriminative filtering, help to guide the
training process to reach the target accuracy quickly.
FwdLLM exhibits enhanced scalability in convergence
speed as the number of available training devices in-
creases. Figure 12 demonstrates that FwdLLM adeptly lever-
ages a growing number of clients to bolster convergence
performance. With the client count increasing from 1 to
500, FwdLLM’s convergence duration notably reduces from
563.65 to 9.96 minutes. On the other hand, vanilla FedLLM
methods, which rely on backward passes, fail to showcase
a similar trend in scalability. For these approaches, the con-
vergence duration plateaus once the client count exceeds 5.
This behavior echoes the findings in §2.2, underscoring that
FwdLLM outperforms backward pass-based FedLLM methods
in scalability as more clients are added.
FwdLLM demonstrates resilience to non-iid data distribu-
tions.We evaluate the performance of FwdLLM under non-iid
data distribution, as presented in Figure 13. Notably, while
the performance of FwdLLM under non-iid slightly lags be-
hind its IID counterpart — witnessing up to a 3.8% accuracy
drop in AGNEWS dataset, it still achieves parity convergence
accuracy with strong baseline methods under non-iid circum-
stances, with up to 337.5% faster. The resilience of FwdLLM
to non-iid data distributions can be attributed to its ability to
engage a vast number of clients, effectively harnessing their
collective knowledge in a single round.

5.2 Convergence Performance on
Billion-Sized Model (LLaMA)

Discriminative task. We further assess FwdLLM using a
billion-sized model, LLaMA-7B, on the AGNEWS dataset and
the Pixel 7 Pro. To accommodate the model on these devices,
we employed the quantization technique GPTQ [32], which
is prevalently utilized with LLMs to minimize parameter
redundancy. During the fine-tuning process, we adopted low-
precision data formats like INT8/INT4 for the native LLaMa
weights, while retaining FP32 for the trainable LoRa weights.
Given that backpropagation-based training approaches are
not feasible for such sizable models on mobile platforms,
we conducted experiments using both centralized training
(leveraging 1x NVIDIA A100) and federated learning (on
smartphones).
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Figure 10: Overall Performance of FwdLLM and baselines. Processor: NPU for FwdLLM and CPU for others.

AGNEWS YAHOO YELP-P AGNEWS YAHOO
Full-FT 3798.6 1076.0 5871.3 721.0 651.4
Adapter 138.2 509.9 948.3 64.6 115.3
Adapter (FedAvg) 1136.8 2147.9 1119.6 100.0 485.7
Bitfit 86.3 350.5 367.0 49.5 134.8
FedAdapter 139.2 303.1 293.2 23.3 59.9
Ours (CPU) 735.6 315.9 271.6 123.9 110.5
Ours (GPU) 127.2 73.0 63.5 32.7 32.5
Ours (NPU) 70.1 30.4 27.0 23.9 18.1

DistilBERT-baseConvergence
Time (mins)

ALBERT-base
YELP-P AGNEWS YAHOO YELP-P AGNEWS YAHOO YELP-P
892.7 1535.2 1090.9 2217.4 3833.6 Err Err
119.6 239.7 311.8 370.8 860.0 132.7 1319.3
141.2 570.4 1718.6 704.6 298.1 1067.0 410.4
116.7 261.4 366.3 307.2 58.9 131.4 196.3
52.5 85.8 176.2 212.7 27.0 45.9 123.1
92.2 551.5 462.7 242.8 194.3 277.3 95.3
42.0 105.1 57.5 37.5 49.1 60.4 24.1
32.7 64.3 49.0 33.2 28.9 30.1 14.1

DistilBERT-base BERT-base RoBERTa-large

Table 5: Performance summary of Figure 10 and its extension to different processors. Device: Google Pixel 7P. Err:
failed to reach target accuracy within 100 hrs.

Convergence
time (mins)

DistilBERT-base BERT-base
Uniform non-IID Uniform non-IID

Adapter 23.4 37.8 92.3 158.2
Ours 9.1 11.2 28.4 51.2

Table 6: Summary of FwdFL performance under non-
iid data distribution. Target accuracy is set as 0.84.

With results shown in Table 7, we make following key
observations. (1) For the first time, FwdLLM enables federated

learning of billion-sized LLMs like LLaMA on COTS mobile
devices. Combined with INT4 quantization, it takes only 0.19
hours for FwdLLM to achieve the target accuracy running
on mobile CPU, which is comparable to a centralized train-
ing with one NVIDIA A100 GPU. This is mainly due to its
ability to scale out its speed on a thousand devices simta-
neously. If on-device training can be accelerated by NPU,
FwdLLM is even much faster than the centralized training. (2)
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Figure 11: Convergence on heterogeneous hardware
environment Jetson TX2 & Pixel 7P for YELP-P.
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Figure 12: FwdLLM performance with different #clients.
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Figure 13: Non-iid performance for AGNEWS on
DistilBERT.

Centralized Training (A100) Federated LearningMethods Mem.
(GB) Acc. Round Time Acc. Round Time

BP, FP16 39.2 89.7 500 0.1 hrs
BP, INT8 32.4 88.6 500 0.06 hrs
BP, INT4 28.5 87.8 500 0.04 hrs
Ours, FP16 15.6 87.0 240 1.5 hrs
Ours, INT8 7.9 86.9 260 0.8 hrs

N/A due to memory
inefficiency on
Pixel 7 Pro (8GB)

Ours (CPU), INT4 0.19 hrs
Ours (NPU∗), INT4 4.0 85.8 130 0.25 hrs 85.8 130 0.07 hrs

Table 7: FwdLLM combined with INT4-based quantiza-
tion is the only feasible approach in federated learning
of LLaMA-7B. Dataset: AGNEWS; Acc.: accuracy (%).
Centralized training and federated learning are con-
ducted on NVIDIA A100 and Pixel 7 Pro, respectively.
*: LLaMA currently is not supported by mobile NPU,
therefore we emulate its speed based on the speedup
of other BERT-like models.

FwdLLM exhibits a harmonious orchestration with quantiza-
tion strategies. Quantizing LLaMAweights to INT8 and INT4
effectively reduces the training-time memory footprint from
15.6GBs to 7.9GBs and 4.0GBs. Yet, the accuracy only de-
grades by less than 1.2%. This shows the great compatibility
of FwdLLM with existing model compression algorithms.

Instruction input：
### Context:
Bethencourt took the title of King of the Canary Islands, as vassal to Henry 
III of Castile. In 1418, Jean's nephew Maciot de Bethencourt sold the rights 
to the islands to Enrique Pérez de Guzmán, 2nd Count de Niebla.

### Question:
Who sold the rights?

### Answer:

Llama-7B-original: Jean de Bethencourt sold the rights to the islands to 
Enrique Pérez de Guzmán, 2nd Count de Niebla.
Llama-7B-tuned(backward): Maciot de Bethencourt
Llama-7B-tuned(forward): Jean's nephew Maciot de Bethencourt

Ground Ture: Maciot de Bethencourt

Figure 14: A case showing how FwdLLM guides the
LLaMA to follow human instructions.
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Figure 15: Resource cost of FwdLLM and baselines.

Generative (instruction-following) task. We also eval-
uate FwdLLM on the generative task SQUAD. As shown in the
Figure 14, FwdLLM could generate similar results as the cen-
tralized training. Statistically, FwdLLM could reach 83% f1-
score after 312 rounds instruct tuning, which is 55.2% higher
than zero-shot performance. Even compared with central-
ized BP-based training, FwdLLM is only 1.9% lower, which do
not affect the generative quality. Note that FwdLLM conducts
experiments on the federated setting with only forward pass,
which is private and fast as we depicted in Table 7.

5.3 System Cost
We analyze the resource cost during FedLLM, including the
peak memory footprint, total energy and network (both up-
link and downlink) expenditure on all participant devices.
The experiments are performed with RoBERTa-large and
YELP-P on Pixel 7 Pro. The results are depicted in Figure 15.
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Figure 16: Model convergence delay with or without
FwdLLM’s key designs, showing their significance. VPP
means Variance-controlled Perturbation Pacing, and
DPS means Discriminative Perturbation Sampling.

Memory footprint As shown in Figure 15a, FwdLLM achieves
up to a 93% reduction in memory usage compared to FT and
a 91.3% decrease relative to the robust PEFT benchmarks. No-
tably, only 169MB of memory is required for a single FwdLLM
round, rendering it highly suitable for mobile devices. This
efficiency stems from FwdLLM’s design, which mandates only
the execution of the forward pass, thus requiring storage
primarily for the trainable model parameters and the pertur-
bation weights; both are parameter-efficient as detailed in
§3.1. Moreover, due to FwdLLM’s sole reliance on inference
functions, cutting-edge inference-centric memory optimiza-
tion techniques [57, 62, 91] can be effortlessly incorporated
to further reduce memory consumption.
Energy and network Compared to Full-FT, FwdLLM is able
to save 96.7% energy consumption and 98.6% network cost
across devices. FwdLLM is still network-efficient compared to
competitive baselines with PEFT enhancements, e.g., 2.1×
less network traffic compared to Adapter approach.The only
expectation is BitFit because it only transmits bias of each pa-
rameter in the network, i.e., only 0.1% of the total parameters.
In the aspects of energy consumption, FwdLLM consumes 2.6×
on average less energy than all the PEFT baselines. The main
reason behind that is FwdLLM only need to compute forward
pass, which is 3-5× quicker than a backward pass [13, 15]
and could be accelerated by NPU processors.

5.4 Significance of key designs
Dissecting system benefits Figure 16 reveals that each
design element plays a pivotal role in enhancing the perfor-
mance of FwdLLM. (1). Vanilla Forward-FL (FwdLLM without
variance-controlled perturbation and discriminative pertur-
bation sampling) dramatically reduces the convergence time,
ranging from 14.13× to 22.45×. This improvement is ascribed
to FwdLLM’s capability to engage more clients in local PEFT
training, thereby magnifying their contributions during the
training phase. (2). Discriminative perturbation sampling
can augment the convergence rate by 1.63× to 2.88×. This
enhancement is realized by harnessing the full potential of
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each perturbation, enabling them to contribute more signifi-
cantly to the gradient updates. (3). Variance-controlled per-
turbation pacing further bolsters convergence performance,
with improvements ranging from 1.78× to 2.02×. This can
be attributed to two primary factors: the early elimination
of ineffective perturbations and the precise identification of
optimal perturbations in subsequent phases.
Global-PS selection strategy Figure 17 demonstrates how
our Global-PS planning strategy efficiently determines the
best global-ps to achieve rapid convergence to a high ac-
curacy. In comparison with a fixed, small global-ps value
of 1, FwdLLM delivers an accuracy boost of 43.6%. And when
pitted against a larger, fixed global-ps value of 50, FwdLLM
achieves equivalent accuracy of 85% but 2.99× faster. This
enhancement stems from that FwdLLM dynamically adapts
the global-ps value as training progresses. It starts with a
smaller global-ps to rapidly gain basic accuracy and tran-
sitions to a larger global-ps to hone in on higher accuracy
in the later stages.
Sensitivity of discriminative sampling Figure 18 illus-
trates how varying sampling ratios influence the conver-
gence performance. A 20% sampling ratio emerges as the
most efficient, offering the best runtime improvement (2.33×)
compared to not employing any sampling (equivalent to a
100% sampling ratio). Using a sampling ratio in the range
of 10-40% yields comparable runtime benefits, suggesting
that there’s flexibility in choosing an effective hyperparame-
ter, ensuring robustness of the sampling method. However,
opting for extremely low sampling ratios is not always ben-
eficial. For instance, a mere 1% sampling ratio hampers the
convergence speed, taking 1.42× longer than the optimal 20%
ratio. This is due to the limited gradient update directions,
resulting in a decelerated convergence.

6 RELATEDWORK
FedLLM With the recent rise of transformers and its vari-
ants [27, 38, 60, 80, 90], LLMs have achieved great success
in various domians, including CV, NLP, etc. While its suc-
cess is largely attributed to the pre-training paradigm, the
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privacy issue of LLMs has been a major concern, e.g., extrac-
tion attacks [10, 26, 114]. FedLLM is a promising direction
to releave the privacy tension of LLMs [115]. To tackle the
tight resource constraint on devices, most recent efforts re-
sort to parameter-efficient fine-tuning (PEFT) techniques
such as Adapter and LoRa [34, 40, 75, 108]. For instance,
FedAdapter [20] addresses the adapter configuration prob-
lem for FedLLM. However, in §2 we show that PEFT-based
FedLLM only mitigates the network bottleneck, but cannot
significantly optimize thememory or speed of on-devce train-
ing. FwdLLM is built atop PEFT but significantly reduces the
device-side overhead and accelerates convergence.
Backpropagation-free training Backpropagation is the
most widely adopted but not the only way to train neural
networks, such as zero-order optimization proposed in early
80s [11]. As models getting larger, reserachers are realizing
that backpropagation becomes a burden to DNN training
pipeline. Thus, a few new paradigms for backpropagation-
free training are proposed [13, 35, 66, 84]. This work is built
atop forward gradient for being mobile friendly. However,
prior literature [13, 71, 78] of forward gradient still use toy
models (MLP or small CNNs). BBTv2 [84] applys gradient-
free methods to optimize the LLM prompts in a central cloud.
BAFFLE [30] and FedZeN [68] are two concurrent work
to FwdLLM, which combine backpropagation-free training
with FL. However, it is not designed for LLM and lacks the
two key techniques as presented in §3.3 and §3.4 that make
backpropagation-free FL more systematic and efficient. An-
other concurrent work FedKSeed [76] aims to enable full-
parameter zeroth-order optimization of FedLLMs; it reduces
the network cost by updating a scalar gradient accumulator
instead of forward gradients vectors. However, it requires
hundreds of seconds to decode the gradients from the scalar
accumulator and excessive local training steps for each client.
FL Optimizations There have been tremendous efforts in
making cross-device FL more efficient, including commu-
nication efficiency [16, 105], model compression/quantiza-
tion [14, 100], client/data sampling [45, 50–52, 70, 96, 102,
113], and on-device training speedup [94, 101]. However,
their benefits are modest compared to the gap between the
LLMs like LLaMA and the resource constraint of mobile
devices. FwdLLM innovates the FL protocol by abandoning
backpropagation and therefore brings much more significant
improvements.

7 CONCLUSIONS
In this study, we introduce FwdLLM, the pioneering feder-
ated learning framework for LLMs that operates without
backpropagation. It borrows the wisdom from the forward
gradients method and applies it to FedLLM training, so as to

avoid memory-intensive backpropagation and enable scal-
able training of LLMs onmobile devices. To generate forward
gradients more efficiently and precisely, we employ an adap-
tive perturbation generator that determines the number of
perturbations on the fly. Additionally, we incorporate a dis-
criminative sampler to selectively screen the generated per-
turbations. Comparative analyses reveal that FwdLLM outper-
forms contemporary FedLLM methods in both convergence
time and scalability.
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