

The 29th Annual International Conference On Mobile Computing And Networking

Efficient Federated Learning for Modern NLP

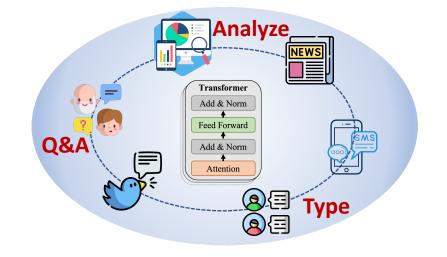
Dongqi Cai¹, Yaozong Wu¹, Shangguang Wang¹, Felix Xiaozhu Lin², Mengwei Xu¹

1 Beiyou Shenzhen Institute 2 University of Virginia

How to understand the meaning of a word? Natural Language Processing (NLP)

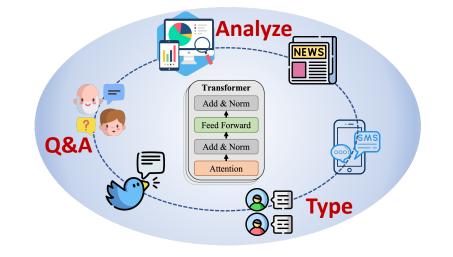
How to understand the meaning of a word? Natural Language Processing (NLP)

What sparks modern NLP? Attention-based Transformer

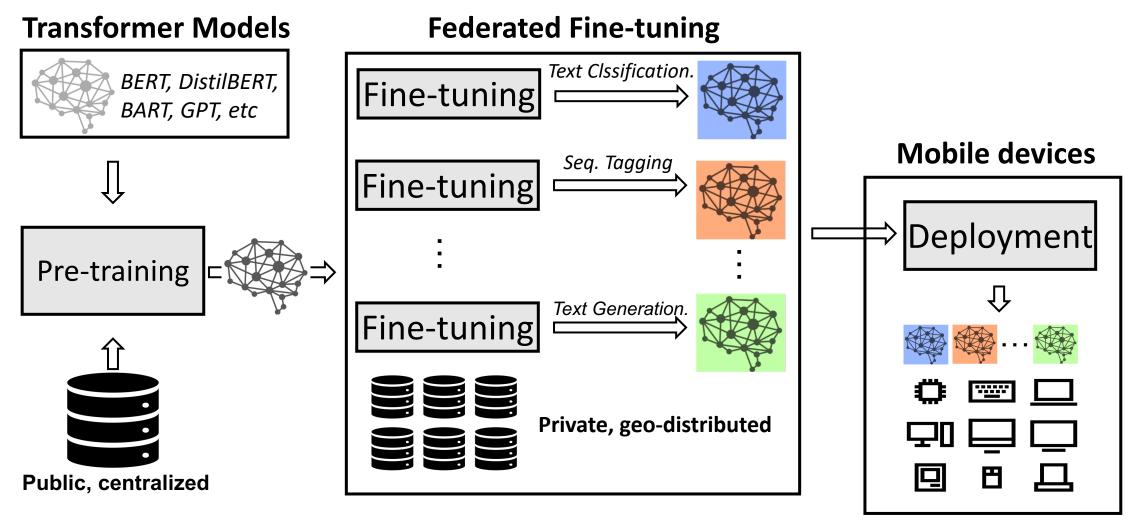


How to understand the meaning of a word? Natural Language Processing (NLP)

What sparks modern NLP? Attention-based Transformer



How to preserve the privacy of training data? Federated Learning

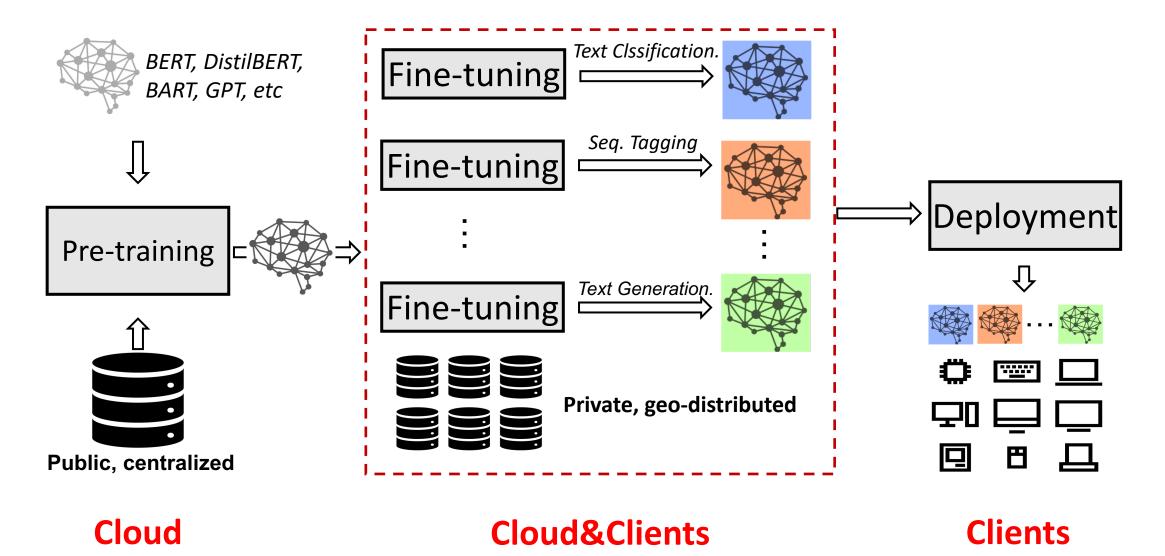


Cloud&Clients

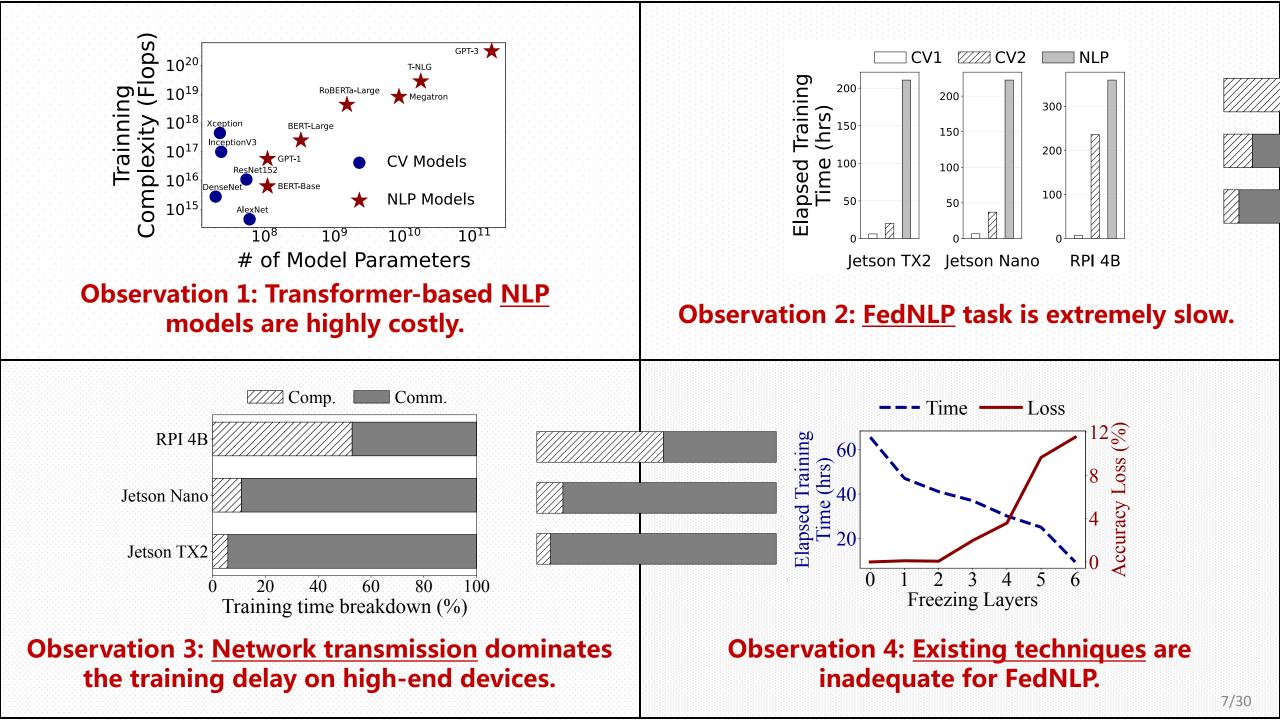
Cloud

Clients

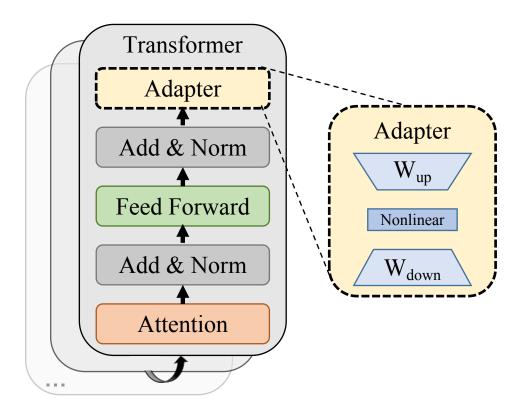
FedNLP: focus of this work



Is FedNLP practical on todays' mobile platforms?



Key Building Block: Pluggable Adapters

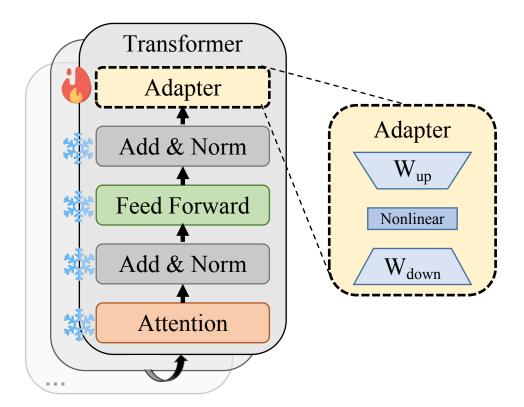


Model	Method	Training Time	Updated Paras.		
BERT	Full Fine-tuning	1.86 sec	110.01 x 10 ⁶		
	Adapter	1.14 sec	0.61 x 10 ⁶		
DistilBERT	Full Fine-tuning	0.91 sec	67 x 10 ⁶		
	Adapter	0.56 sec	$0.32 \ge 10^6$		

Table 1: **Computation** and **communication** cost of inserting adapters into each transformer block (width=32) and full model tuning. Batch size: 4. Device: Jetson TX2.

- Tiny adapters (less than 1M for each) are inserted to pre-trained Transformers.
- Only adapters are updated during training, most of Transformer parameters are freezing.

Key Building Block: Pluggable Adapters

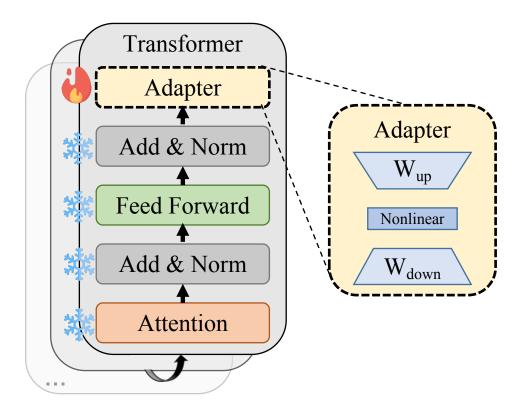


Model	Method	Method Training Time			
BERT	Full Fine-tuning	1.86 sec	110.01 x 10 ⁶		
DERI	Adapter	1.14 sec	0.61 x 10 ⁶		
DistilBERT	Full Fine-tuning	0.91 sec	67 x 10 ⁶		
	Adapter	0.56 sec	$0.32 \ge 10^6$		

Table 1: **Computation** and **communication** cost of inserting adapters into each transformer block (width=32) and full model tuning. Batch size: 4. Device: Jetson TX2.

- Tiny adapters (less than 1M for each) are inserted to pre-trained Transformers.
- Only adapters are updated during training, most of Transformer parameters are freezing.

Key Building Block: Pluggable Adapters

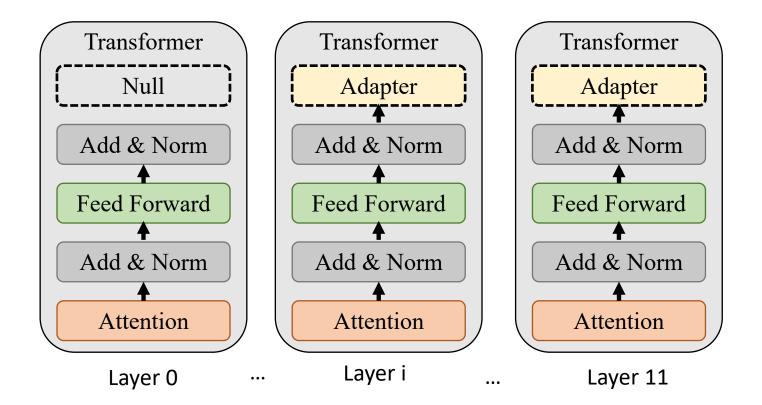


Model	Method	Training Time	Updated Paras.		
BERT	Full Fine-tuning	1.86 sec	110.01 x 10 ⁶		
DERI	Adapter	1.14 sec	0.61 x 10 ⁶		
DistilBERT	Full Fine-tuning	0.91 sec	67 x 10 ⁶		
	Adapter	0.56 sec	$0.32 \ge 10^6$		

Table 1: **Computation** and **communication** cost of inserting adapters into each transformer block (width=32) and full model tuning. Batch size: 4. Device: Jetson TX2.

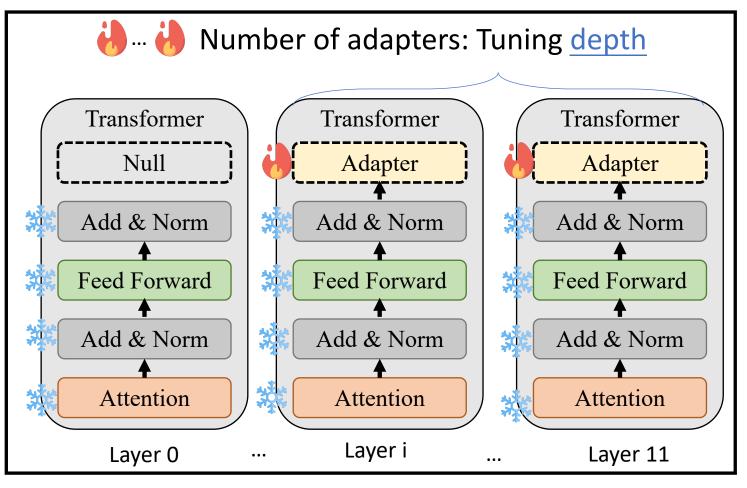
- Tiny adapters (less than 1M for each) are inserted to pre-trained Transformers.
- Only adapters are updated during training, most of Transformer parameters are freezing.

Challenge: Large Adapter Configuration Space



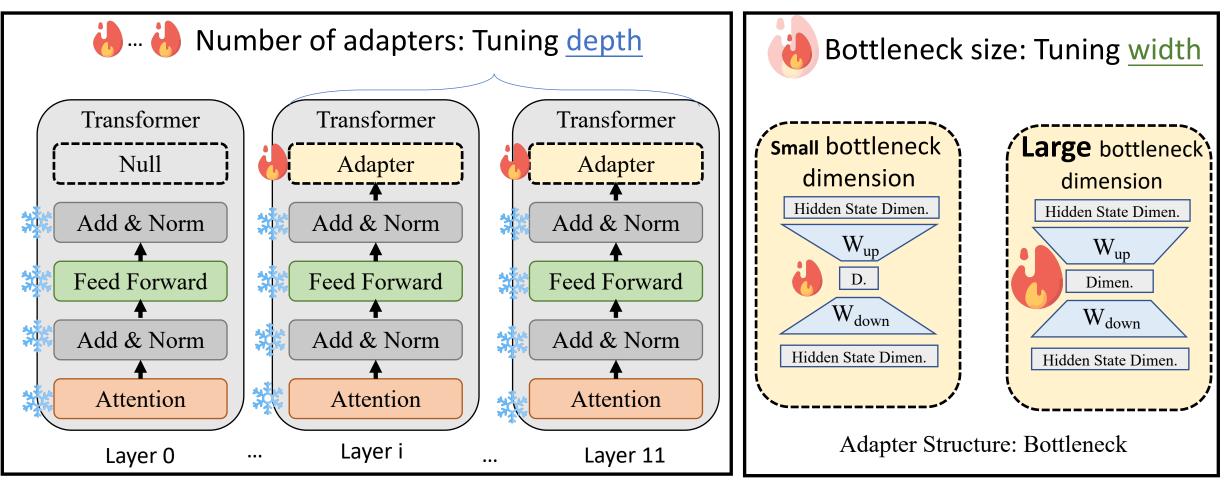
Different adapter configurations (depth, width) result in a variety of convergence delays, up to $4.7 \times$ gap.

Challenge: Large Adapter Configuration Space



Different adapter configurations (depth, width) result in a variety of convergence delays, up to $4.7 \times$ gap.

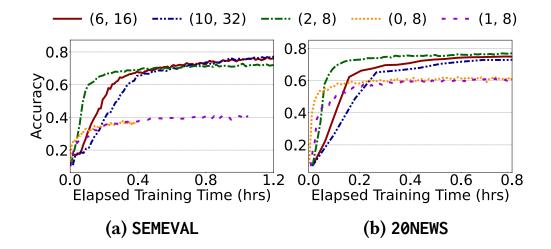
Challenge: Large Adapter Configuration Space



Different adapter configurations (<u>depth</u>, <u>width</u>) result in a variety of convergence delays, up to $4.7 \times$ gap.

Challenge: No Silver Bullet Configuration

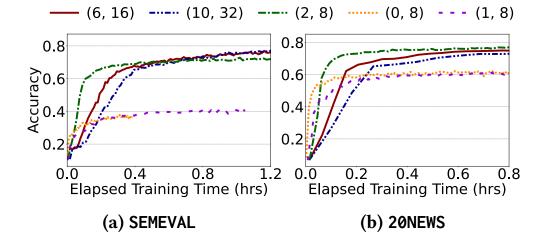
• The optimal configuration can be switched across FL rounds.



Across different target accuracy and target FedNLP tasks, the optimal adapter configuration (depth, width) varies. Model: BERT; device: Jetson TX2.

Challenge: No Silver Bullet Configuration

- The optimal configuration can be **switched** across FL rounds.
- Configuration varies across many factors: targeted accuracy, targeted NLP tasks and client resources.

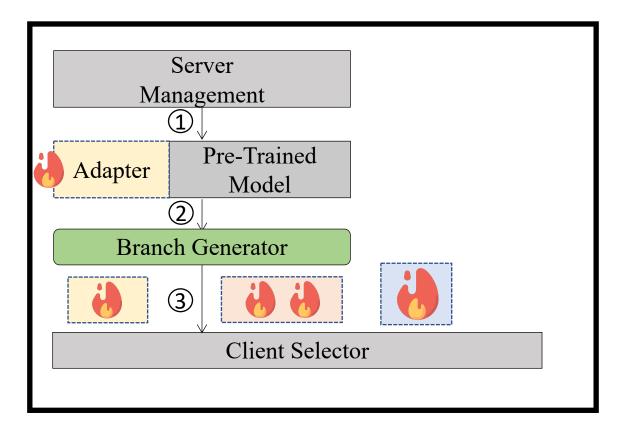


Across different target accuracy and target FedNLP tasks, the optimal adapter configuration (depth, width) varies. Model: BERT; device: Jetson TX2.

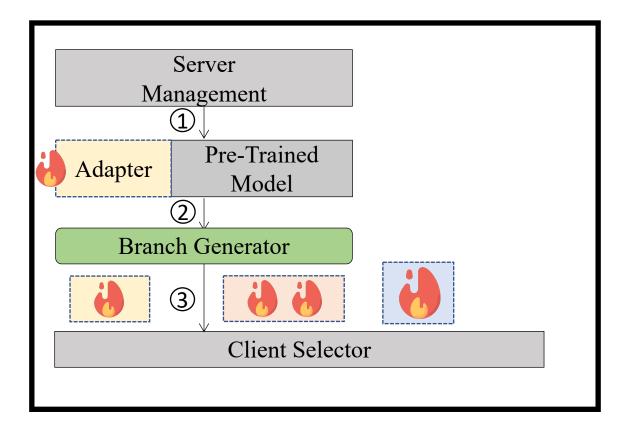
		Optimal adapter configuration (depth, width)								
Model	Datasets	towards different target accuracy								
		99%	95%	90%	80%	70%				
BERT	20news	(2,64)	(2,32)	(2,8)	(2,8)	(2,8)				
DLNI	agnews	(3,16)	(2,16)	(2,8)	(0,8)	(0,8)				
	semeval	(10,8)	(6,8)	(6,8)	(2,8)	(2,8)				
	ontonotes	(12, 32)	(12, 32)	(10, 32)	(0, 16)	(0, 16)				

The optimal adapter configuration (i.e., best time toaccuracy) for different target accuracy (ratio to the full convergence accuracy) and different datasets.

• Progressive training: curriculum upgrading adapter configuration.

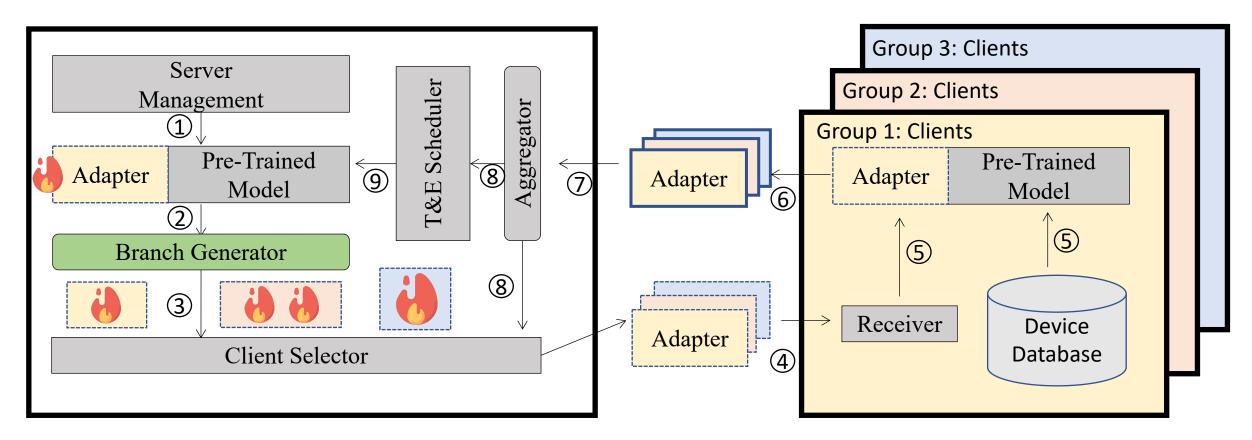


• Progressive training: curriculum upgrading adapter configuration.



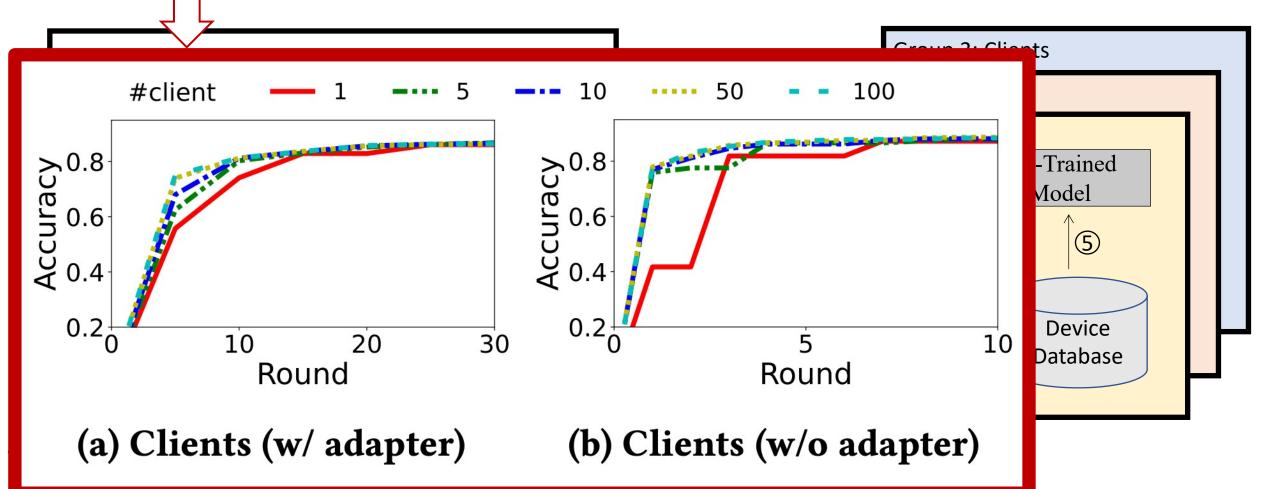
When and how to upgrade the configuration?

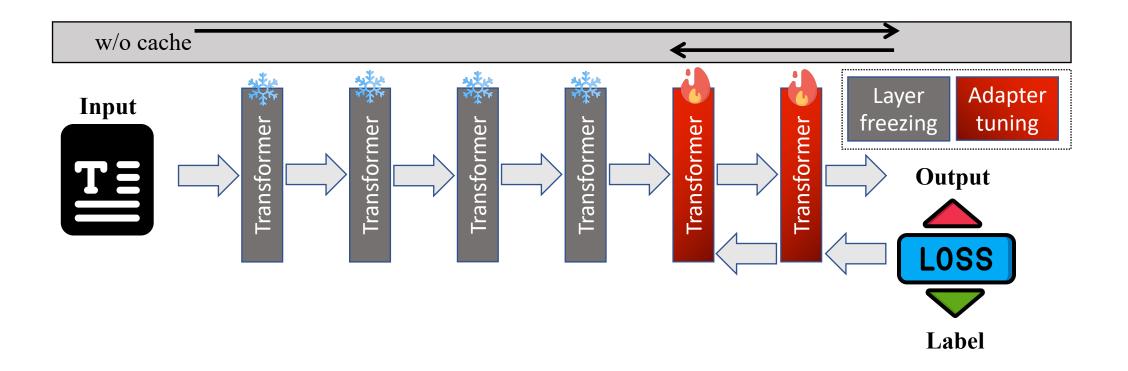
- Progressive training: curriculum upgrading adapter configuration.
- Sideline trails: identifying timing and direction to upgrade configuration.

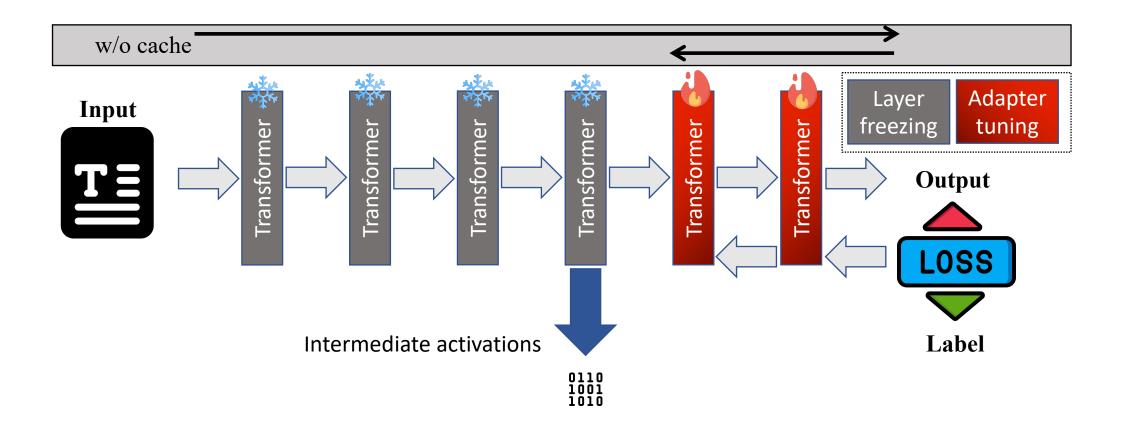


When and how to upgrade the configuration?

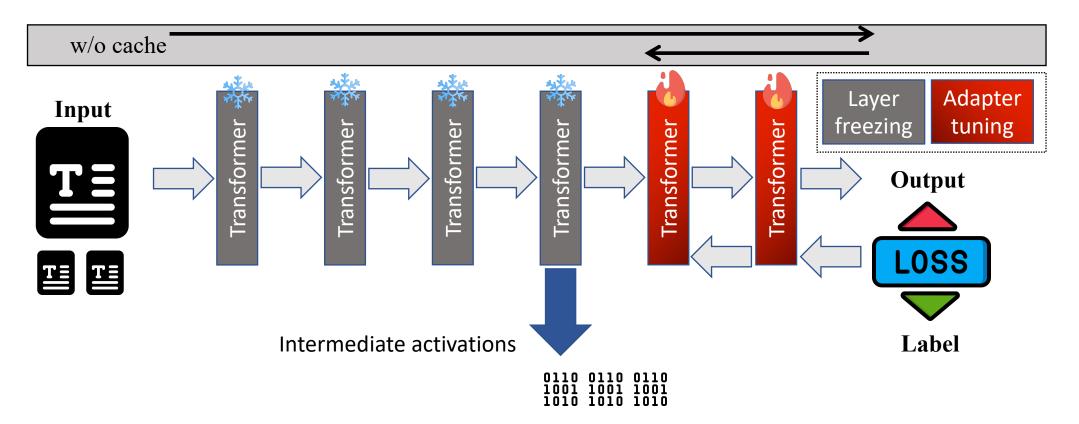
- **Progressive training:** curriculum upgrading adapter configuration.
- Sideline trails: identifying timing and direction to upgrade configuration.



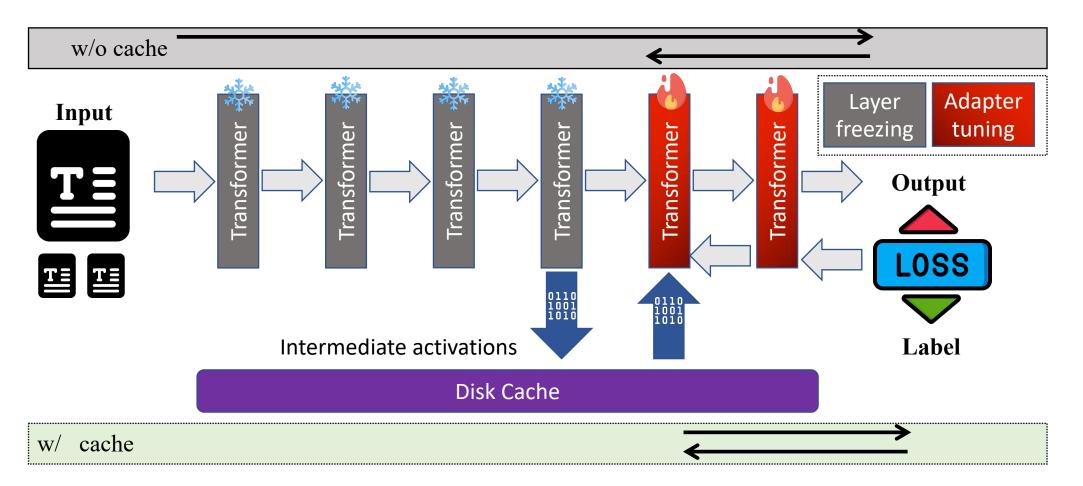




An unique opportunity: Most of the Transformer parameters are freezing.



An unique opportunity: Most of the Transformer parameters are freezing.



Evaluation: Setup

Implementation

- FedNLP^[1]
- AdapterHub^[2]

Setups

- 3 devices
- 2 models (BERT & DistilBERT)
- 4 datasets

• Baselines

- 1. Vanilla Fine-Tuning (FT)
- 2. FineTuning-Quantized (FTQ)
- 3. LayerFreeze-Oracle (LF_{oracle})
- 4. LayerFreeze-Quantized-Oracle (LFQ_{oracle})

Device	Processor	Per-batch		
Device	r i ocessoi	Latency (s)		
Jetson TX2 [1]	256-core NVIDIA Pascal™ GPU.	0.88		
Jetson Nano [2]	128-core NVIDIA CUDA® GPU.	1.89		
RPI 4B [3]	Broadcom BCM2711B0 quad-core	18.27		
KF14D[5]	A72 64-bit @ 1.5GHz CPU.	10.27		

Task	Dataset	# of Clients	Labels	Non-IID	Samples
TC	20NEWS [44]	100	20	/	18.8k
TC	AGNEWS [92]	1,000	4	a=10	127.6k
TC	SEMEVAL [31]	100	19	a=100	10.7k
ST	ONTONOTES [60]	600	37	a=10	5.5k

[1] Yuchen Lin B, He C, Zeng Z, et al. FedNLP: Benchmarking Federated Learning Methods for Natural Language Processing Tasks[J]. Findings of NAACL, 2022.

[2] Pfeiffer J, Rücklé A, Poth C, et al. AdapterHub: A Framework for Adapting Transformers. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. 2020: 46-54

Evaluation: End-to-end Performance

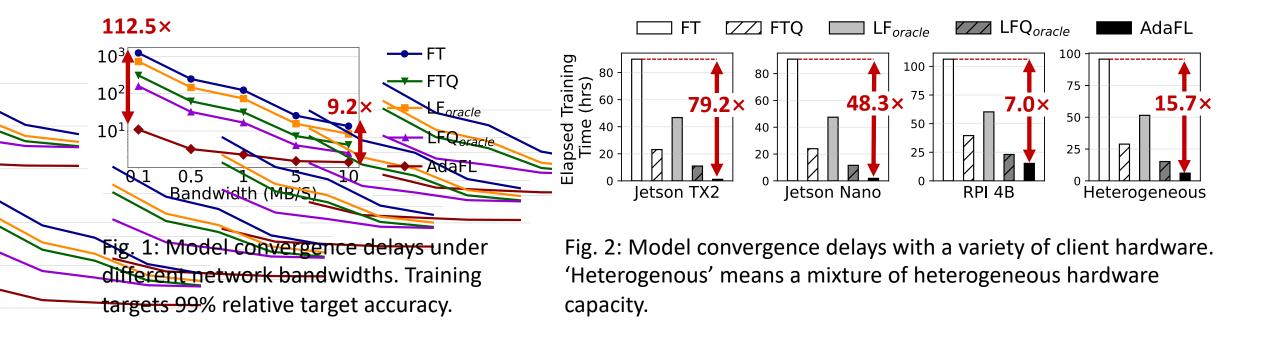
• Our system reduces model convergence delays significantly.

Datasets		20NEWS	5	AGNEWS		SEMEVAL		ONTONOTES					
Relative Accuracy	99%	95%	90%	99%	95%	90%	99%	95%	90%	99%	95%	90%	
FT	44.0	23.4	13.1	31.1	10.1	5.2	124.3	89.9	61.7	76.1	55.9	35.6	
FTQ	12.7	6.8	3.8	9.1	2.6	1.7	32.0	23.1	15.9	21.2	15.5	9.9	
LF _{oracle}	18.5	8.1	4.3	9.6	1.4	1.1	74.0	46.8	33.2	82.5	43.8	24.5	260×
LFQ _{oracle}	5.2	2.5	1.1	1.6	0.3	0.2	16.8	11.0	7.7	23.9	12.9	7.2	
AdaFL	1.3	0.4	0.1	0.2	0.03	0.02	2.3	1.1	0.6	4.5	2.4	1.3	

Table 1: Elapsed training time taken to reach different relative target accuracy. NLP model: BERT-base. Unit: Hour.

Evaluation: System Scalability

- Our system outperforms baselines Our systemrious **network** environments
- It outperforms baselines on various client hardware.



Evaluation: Key deign

• Our key designs contribute to the results significantly.

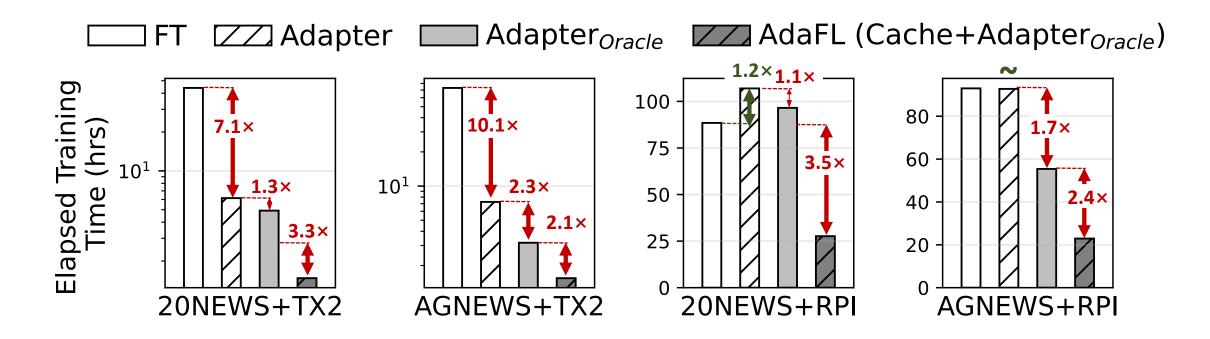


Fig. 1: Model convergence delays with and without our system's key designs, showing their significance.

Evaluation: System Cost

Our system is resource-efficient.

- It saves up to 220.7× network traffic. (Fig. 1)
- It reduces up to 32.2× energy consumption. (Fig. 2)
- It nontrivially reduces the **memory usage**. (Fig. 3)

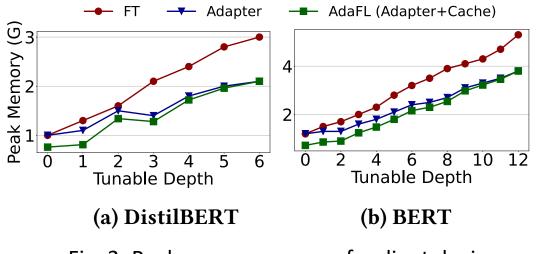


Fig. 3: Peak memory usage of a client device.

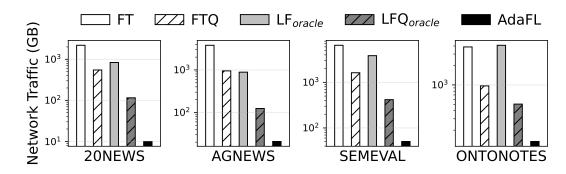


Fig. 1: Network traffic (downlink and uplink) of all 15 client devices.

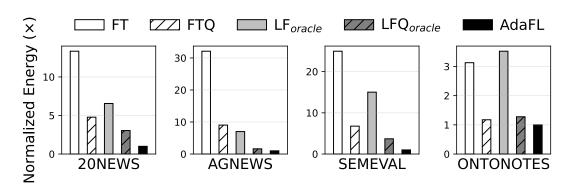


Fig. 2: Per-client average energy consumption, normalized to that of ours.

Conclusion

- Our system is a federated learning framework for fast NLP model finetuning.
- It uses adapter as the only trainable module in NLP model to reduce the training cost.
- To identify the optimal adapter configuration on the fly, it integrates a progressive training paradigm and trail-and-error profiling technique.
- It can reduce FedNLP's model convergence delay to no more than several hours, which is up to 155× faster compared to vanilla FedNLP and 48× faster compared to strong baselines.

Conclusion

- Our system is a federated learning framework for fast NLP model finetuning.
- It uses adapter as the only trainable module in NLP model to reduce the training cost.
- To identify the optimal adapter configuration on the fly, it integrates a progressive training paradigm and trail-and-error profiling technique.
- It can reduce FedNLP's model convergence delay to no more than several hours, which is up to 155× faster compared to vanilla FedNLP and 48× faster compared to strong baselines.

Thanks for listening!

<Efficient Federated Learning for Modern NLP>

Dongqi Cai, Yaozong Wu, Shangguang Wang, Felix Xiaozhu Lin, Mengwei Xu

