

The 29th Annual International Conference On Mobile Computing And Networking

# Federated Few-shot Learning for Mobile NLP

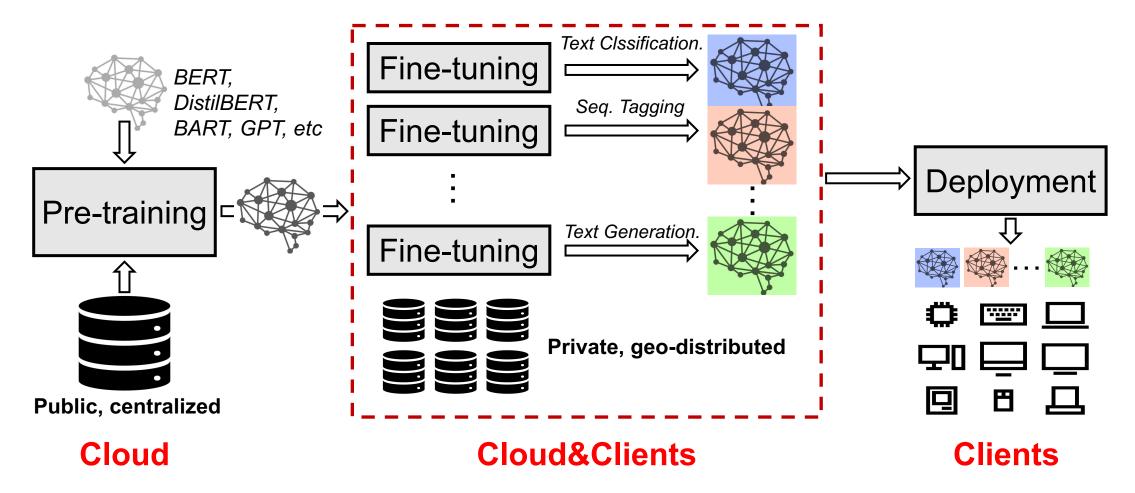
**Dongqi Cai<sup>1</sup>**, Shangguang Wang<sup>1</sup>, Yaozong Wu<sup>1</sup>, Felix Xiaozhu Lin<sup>2</sup>, Mengwei Xu<sup>1</sup>



1 Beiyou Shenzhen Institute 2 University of Virginia

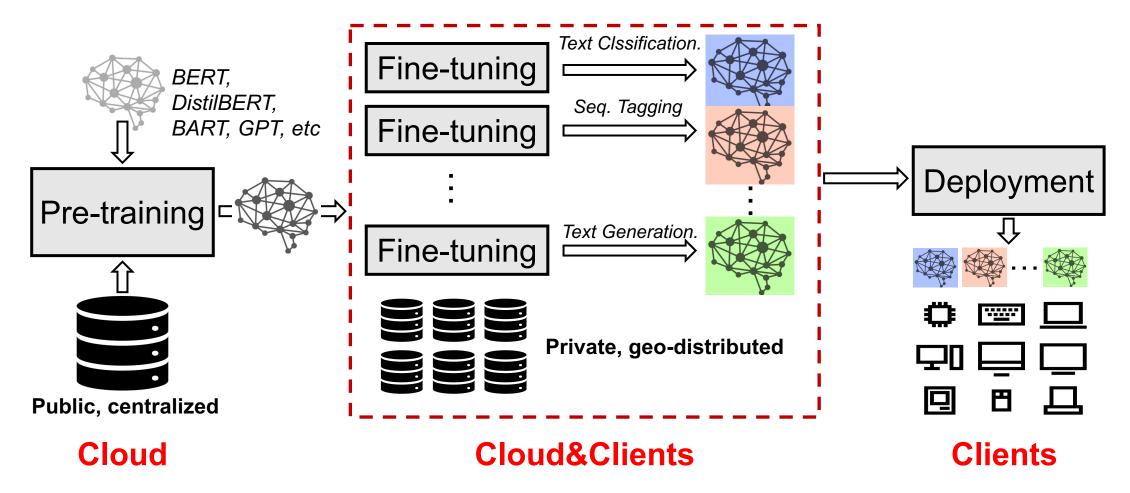


#### FedNLP: focus of our work

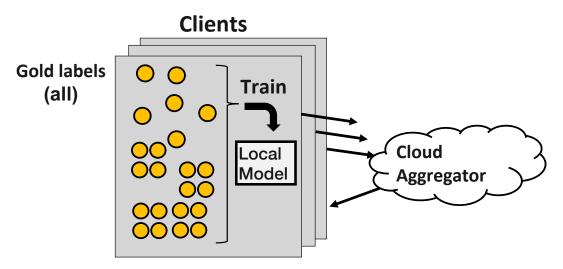


# Where is the training data coming from?

#### FedNLP: focus of our work



# Background: Federated Few-shot Learning (FedFSL)

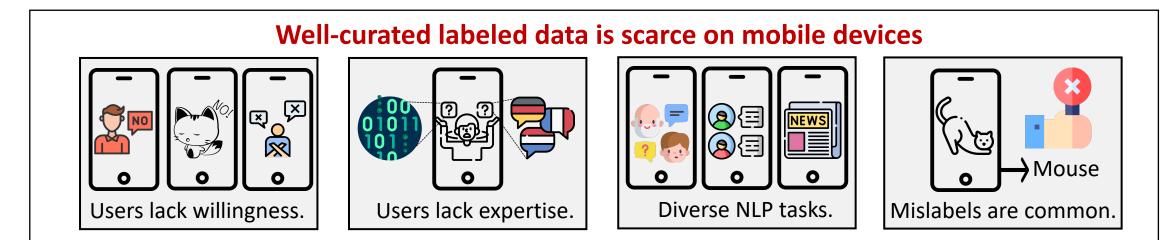


(a) Classic FL: rely on abundant labels

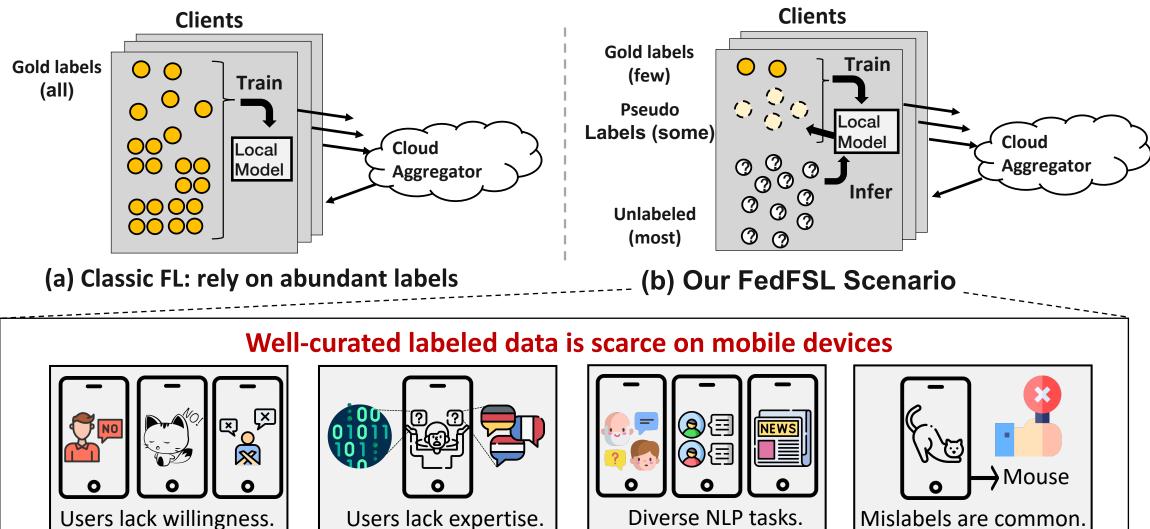
# Background: Federated Few-shot Learning (FedFSL)



(a) Classic FL: rely on abundant labels



# Background: Federated Few-shot Learning (FedFSL)



# Background: Pseudo labeling

The rational behind pseudo labeling:

*"Training with pseudo labels encourages the model to learn a decision boundary that lies in a region where the example density is lower."* 

For example,

"great":0.9, "bad":0.1 rather than "great":0.6, "bad":0.4

Low class overlap  $\implies$  Low entropy



Data without labels

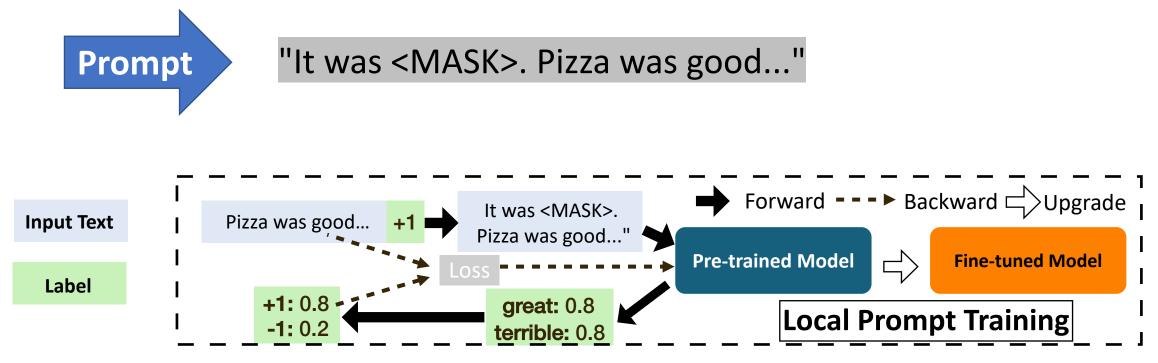


Data with **pseudo labels** 



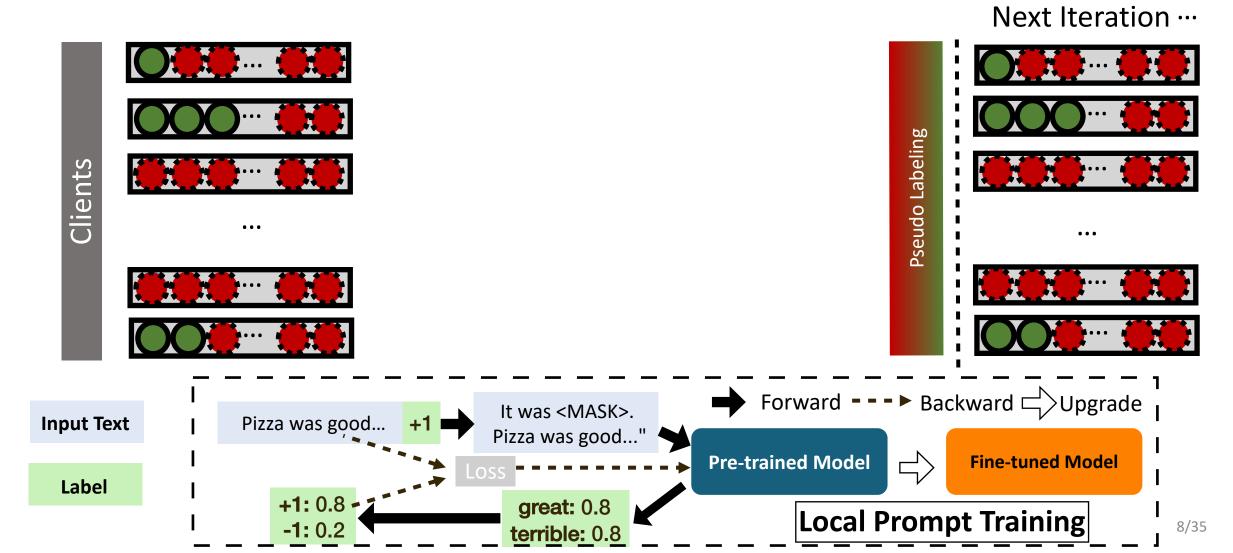
#### Background: Prompt learning

- T1 (label = +1): "Most delicious pizza l've ever had."
- T2 (label = -1): "You can get better sushi for half the price."
- T3 (label = ?): Pizza was good. Not worth the price.

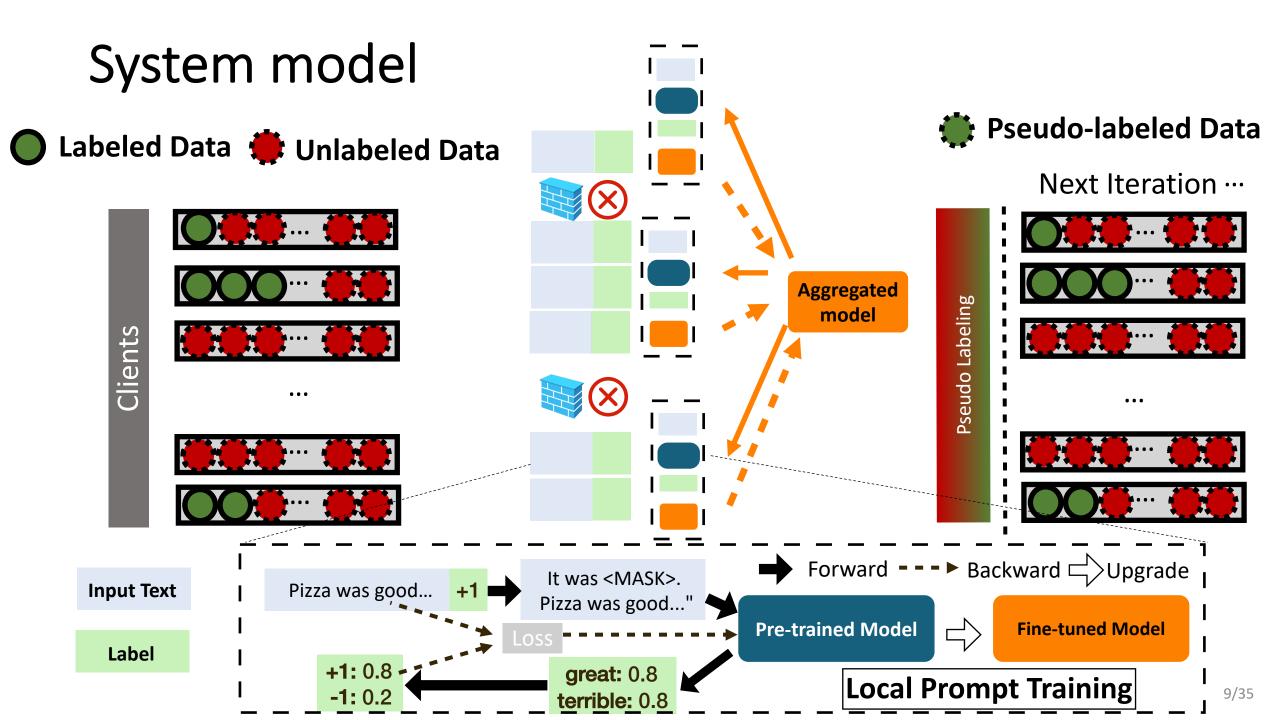


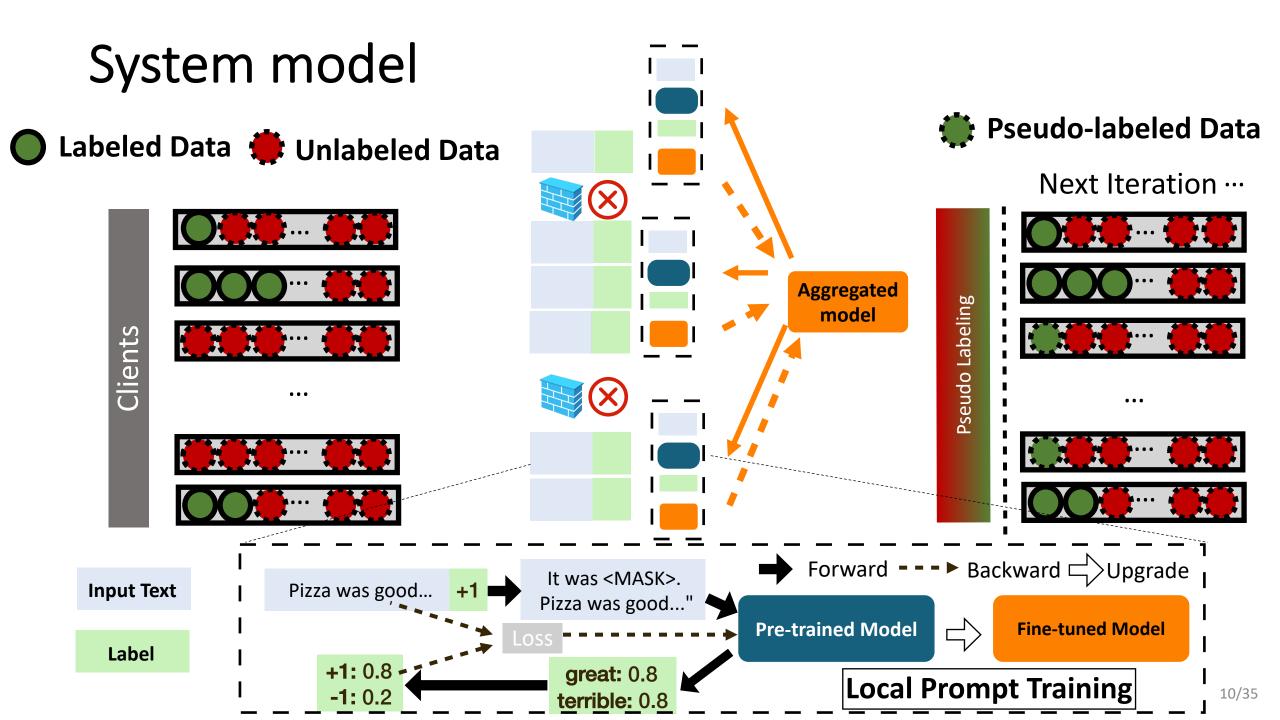
#### System model

🔵 Labeled Data 븆 Unlabeled Data



Pseudo-labeled Data





#### Preliminary: FedFSL performance

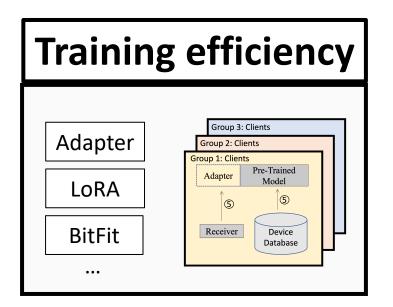
| Dataset          | Full-set<br>(oracle) | Vanilla-<br>FedFSL | Prompt-<br>Only | Pseudo-<br>Only | Both<br>(Ours)   | Satisfactory accuracy |
|------------------|----------------------|--------------------|-----------------|-----------------|------------------|-----------------------|
| AGNEWS (skewed)  | 93.0                 | $64.8 \pm 3.1$     | $68.4{\pm}2.4$  | $67.5 \pm 1.3$  | <b>90.2</b> ±0.5 |                       |
| MNLI (skewed)    | 85.0                 | $37.7 \pm 5.6$     | $42.4{\pm}5.8$  | $42.7 \pm 6.3$  | <b>77.4</b> ±1.2 |                       |
| YAHOO (skewed)   | 78.0                 | $24.4 \pm 10.3$    | $41.8 \pm 4.3$  | $31.0\pm2.0$    | 66.9±1.1         | Pseudo Prompt         |
| YELP-F (skewed)  | 70.0                 | $38.3 \pm 8.8$     | $51.2 \pm 1.8$  | $45.7\pm4.4$    | 58.2±2.4         |                       |
| YELP-F (uniform) | 70.0                 | $54.0 \pm 0.1$     | 58.1±1.5        | $57.0 \pm 2.2$  | <b>61.9</b> ±0.7 | labeling learning     |

#### Preliminary: FedFSL performance

| Dataset          | Full-set<br>(oracle) | Vanilla-<br>FedFSL | Prompt-<br>Only | Pseudo-<br>Only | Both<br>(Ours)   | Satisfactory accuracy |
|------------------|----------------------|--------------------|-----------------|-----------------|------------------|-----------------------|
| AGNEWS (skewed)  | 93.0                 | $64.8 \pm 3.1$     | $68.4 \pm 2.4$  | 67.5±1.3        | <b>90.2</b> ±0.5 |                       |
| MNLI (skewed)    | 85.0                 | $37.7 \pm 5.6$     | $42.4 \pm 5.8$  | $42.7 \pm 6.3$  | <b>77.4</b> ±1.2 |                       |
| YAHOO (skewed)   | 78.0                 | $24.4 \pm 10.3$    | $41.8 \pm 4.3$  | $31.0 \pm 2.0$  | <b>66.9</b> ±1.1 | Droudo                |
| YELP-F (skewed)  | 70.0                 | $38.3 \pm 8.8$     | $51.2 \pm 1.8$  | $45.7 \pm 4.4$  | <b>58.2</b> ±2.4 | Pseudo Prompt         |
| YELP-F (uniform) | 70.0                 | $54.0 \pm 0.1$     | 58.1±1.5        | $57.0 \pm 2.2$  | <b>61.9</b> ±0.7 | labeling              |

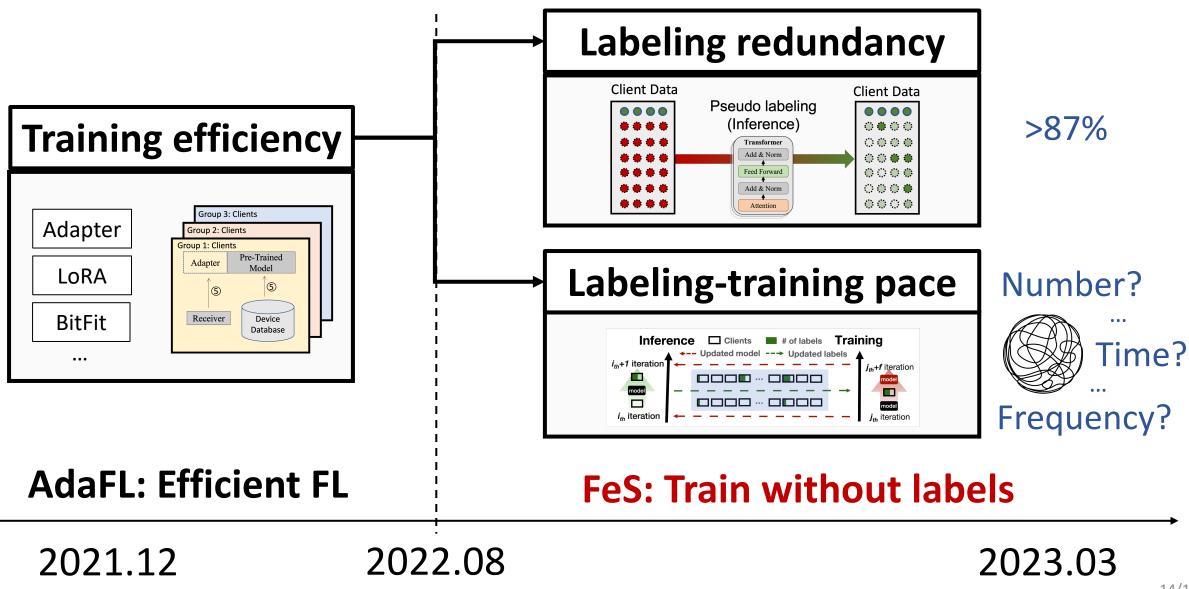
# How about the system cost?

#### Challenge: FedFSL system cost

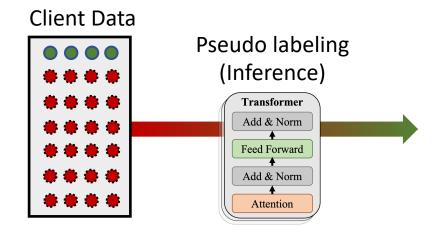


#### **AdaFL: Efficient FL**

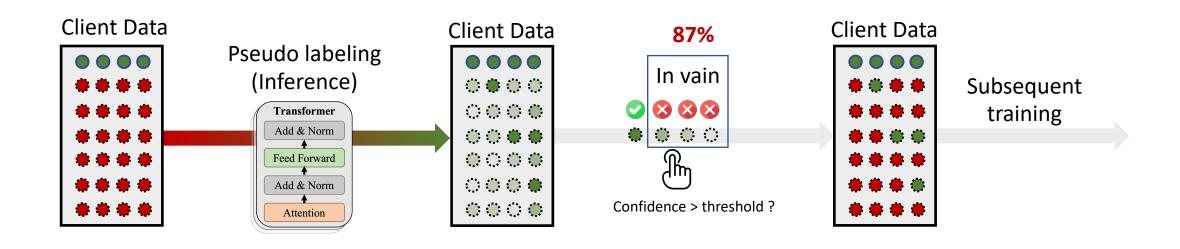
#### Challenge: FedFSL system cost



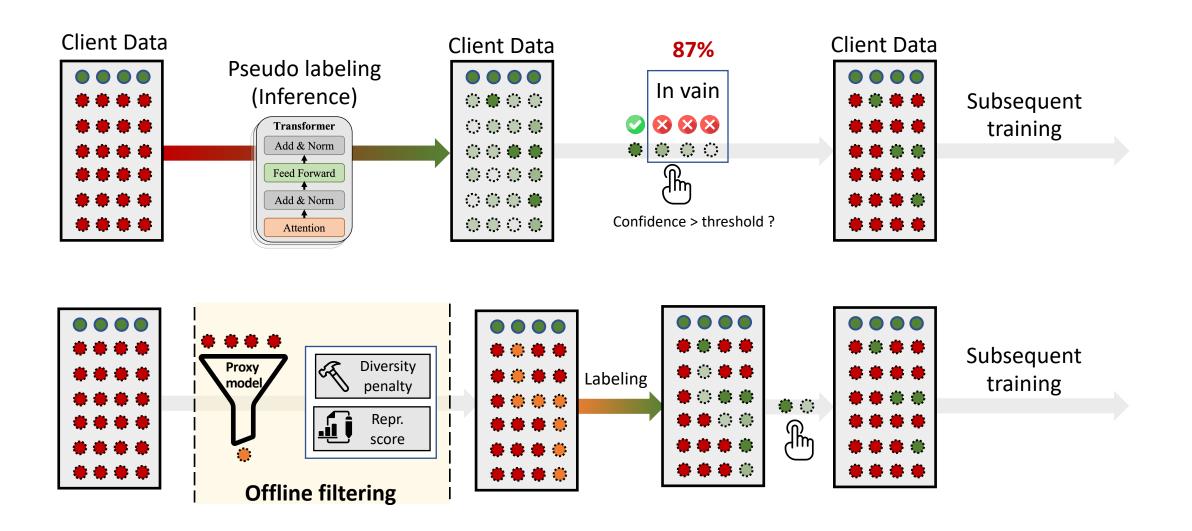
#### **Design 1: Representational Filtering**

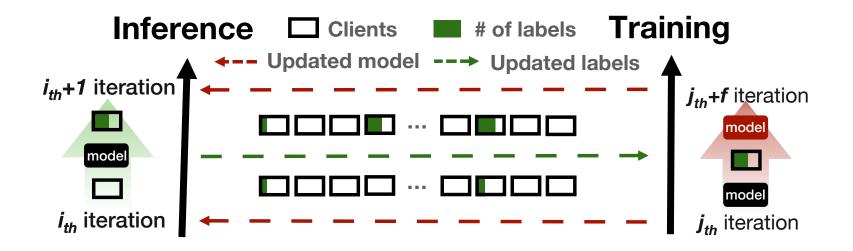


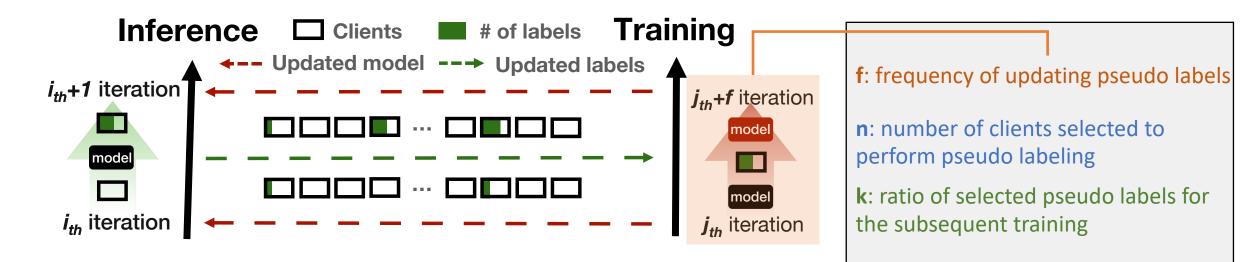
#### **Design: Representational Filtering**



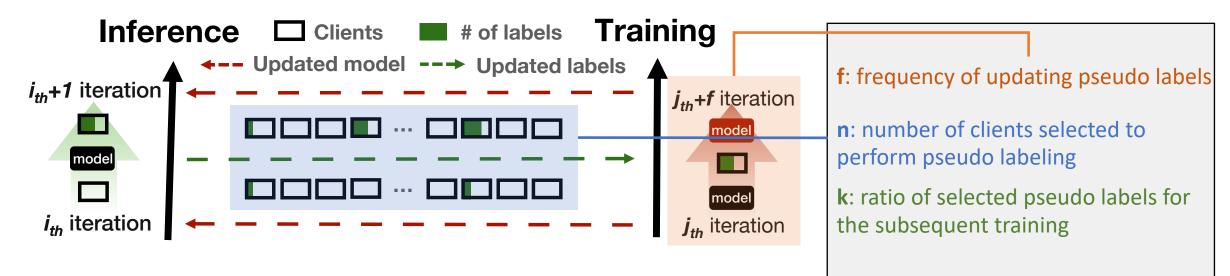
#### **Design: Representational Filtering**



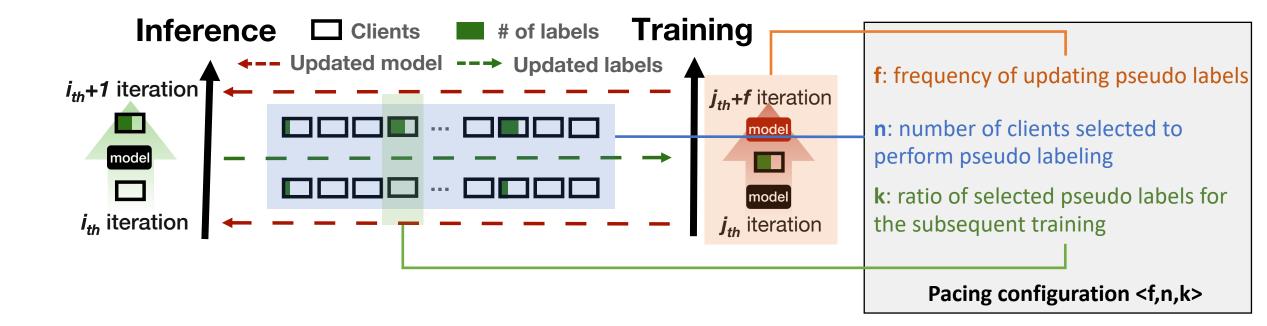


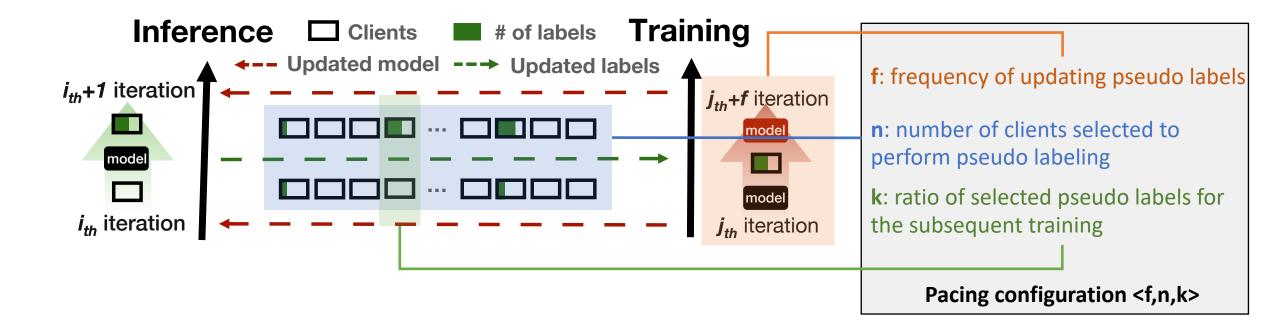


Pacing configuration <f,n,k>

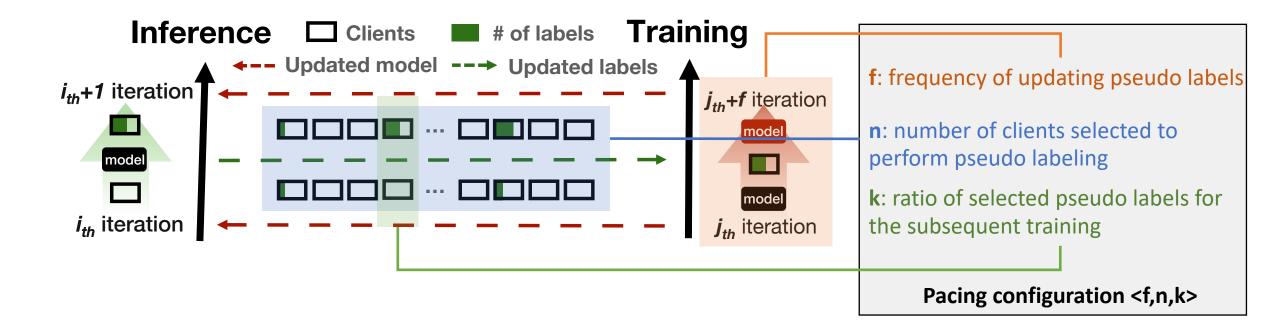


Pacing configuration <f,n,k>





• Progressively speed up the pseudo labeling speed, i.e., adding more pseudo labels at a higher frequency.

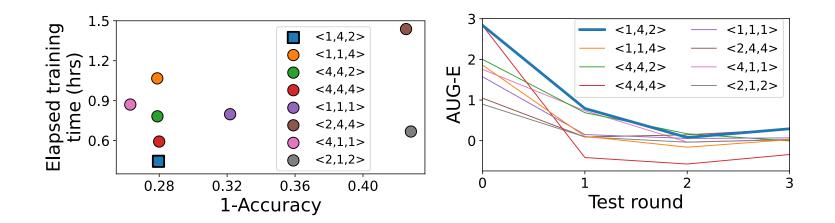


- Progressively speed up the pseudo labeling speed, i.e., adding more pseudo labels at a higher frequency.
- Progressive upgrading is only a coarse-grained plan, how to control the pace more concisely?

#### Augment efficiency (AUG-E):

measure the gradient of the time-to-accuracy curve to search for an effective configuration with low cost

$$AUG - E(f, n, k) \leftarrow \frac{\eta \Delta(acc)}{C_{\text{infer}}(f, n) + \theta \cdot C_{\text{train}}(k)}$$



**Our system** selects a configuration with **best AUG-E** from a candidate list (hand-picked through extensive offline experiments) for future pseudo labeling.

#### Augment efficiency (AUG-E):

measure the gradient of the time-to-accuracy curve to search for an effective configuration with low cost



**Our system** selects a configuration with **best AUG-E** from a candidate list (hand-picked through extensive offline experiments) for future pseudo labeling.

#### **Evaluation: Setup**

#### Implementation

- FedNLP<sup>[1]</sup>
- PET<sup>[2]</sup>

#### • Setups

- 2 devices (TX2, RPI 4B)
- 2 models (RoBERTa-base & large)
- 4 datasets

#### Baselines

- 1. Vanilla Fine-Tuning (FedCLS)
- 2. Vanilla Few-shot Tuning (FedFSL)
- Vanilla Few-shot Tuning + Bias-tuning (FedFSL-BIAS)

| -                     | Dataset      | AGNEWS [108] | MNLI [89] | YAHOO [108]   | YELP-F [108] |
|-----------------------|--------------|--------------|-----------|---------------|--------------|
| -                     | # Training   | 120k         | 392.7k    | 1.4M          | 650k         |
|                       | # Test       | 7.6k         | 9.8k      | 60k           | 50k          |
| 64 labels in total    | # Clients    | 100          | 1000      | 1000          | 1000         |
| instead of per client | # Labels     | 64           | 64        | 64            | 64           |
|                       | Distribution | Skewed       | Uniform   | Skewed        | Skewed       |
| -                     | Prompt       | a b          | a ?, b    | Category: a b | It was a     |

| Satur       | La         | beling       | Training     |                    |  |  |  |  |
|-------------|------------|--------------|--------------|--------------------|--|--|--|--|
| Setup       | Pacing     | Optimization | Method       | Optimization       |  |  |  |  |
| FedCLS      | /          | /            | Head-based   | /                  |  |  |  |  |
| FedFSL      | Static     | /            | Prompt-based | /                  |  |  |  |  |
| FedFSL-BIAS | Static     | /            | Prompt-based | Bias-only tuning   |  |  |  |  |
| FeS (Ours)  | Curriculum | Filtering    | Prompt-based | Depth/Capacity     |  |  |  |  |
|             | (§3.1)     | (§3.2)       | (§2.2)       | Co-planning (§3.3) |  |  |  |  |

[1] Yuchen Lin B, He C, Zeng Z, et al. FedNLP: Benchmarking Federated Learning Methods for Natural Language Processing Tasks[J]. Findings of NAACL, 2022.

[2] Schick T, Schütze H. Exploiting Cloze-Questions for Few-Shot Text Classification and Natural Language Inference[C]//Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. 2021: 255-269.

## Evaluation: End-to-end Performance

• Our system significantly speeds up model convergence at high accuracy.

| Dataset     |       | A    | GNEW    | S       |      |       | MNLI       |      |                  |       | ҮАНОО |                       |      |       | YELP-F       |       |      |            |      |      |            |
|-------------|-------|------|---------|---------|------|-------|------------|------|------------------|-------|-------|-----------------------|------|-------|--------------|-------|------|------------|------|------|------------|
|             | Conv  | Г    | `ime-to | -acc (h | r)   | Conv. | Time-to-ac |      | Time-to-acc (hr) |       | Conv. | Comu Time-to-acc (hr) |      |       | Conv Time-to |       |      | o-acc (hr) |      |      |            |
| Perf.       | Conv. | T    | X2      | R       | PI   | Acc.  | T          | X2   | R                | PI    |       | T                     | X2   | RI    | PI           | Conv. | T    | X2         | R    | PI   |            |
|             | Acc.  | acc1 | acc2    | acc1    | acc2 | Acc.  | acc1       | acc2 | acc1             | acc2  | Acc.  | acc1                  | acc2 | acc1  | acc2         | Acc.  | acc1 | acc2       | acc1 | acc2 |            |
| FedCSL      | 27.9% | Х    | Х       | Х       | Х    | 37.3% | Х          | Х    | Х                | Х     | 34.6% | Х                     | Х    | Х     | Х            | 35.7% | Х    | X          | X    | Х    |            |
| FedFSL      | 92.5% | 3.3  | 3.3     | 50.0    | 50.0 | 74.1% | 9.2        | Х    | 137.5            | Х     | 84.3% | 8.3                   | Х    | 125.0 | Х            | 75.3% | 2.1  | Х          | 31.3 | X    |            |
| FedFSL-BIAS | 92.5% | 1.7  | 1.7     | 25.0    | 25.0 | 88.1% | 0.5        | 11.7 | 7.5              | 175.0 | 85.9% | 3.3                   | 5.3  | 50.0  | 80.0         | 79.4% | 0.2  | 2.1        | 2.5  | 10.4 | 260× 68.0% |
| Ours        | 95.9% | 0.4  | 0.4     | 5.5     | 5.5  | 92.2% | 0.2        | 0.8  | 2.5              | 12.5  | 88.5% | 0.3                   | 0.7  | 5.0   | 10.0         | 86.8% | 0.1  | 0.5        | 1.3  | 7.5  |            |
|             |       |      |         |         |      |       |            |      |                  |       |       |                       |      |       |              |       |      |            |      |      |            |

Table 1: The final convergence accuracy ("Conv. Acc.") and the elapsed training time ("Time-toacc") to reach different relative accuracy. "acc1"/"acc2" are the final convergence accuracy of FedFSL/FedFSL-BIAS, respectively. "X" means the accuracy cannot be achieved.

## Evaluation: Key deign

• Our key designs contribute to the results significantly.

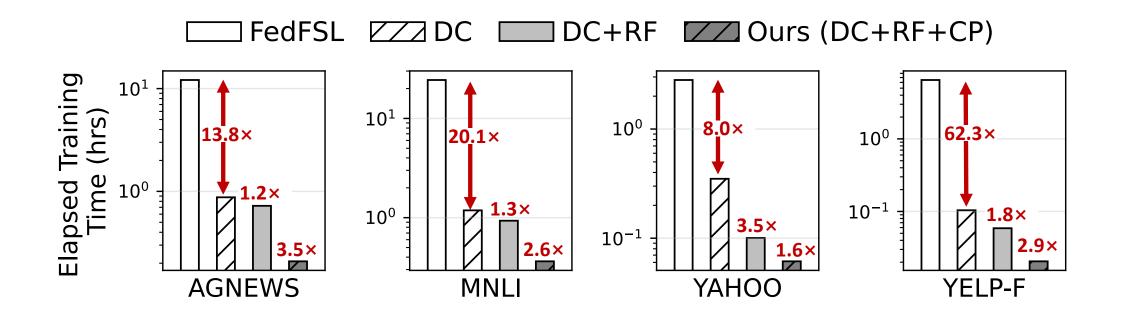


Fig. 1: Model convergence delays with and without Our system's key designs, showing their significance. **DC**: training depth/capacity co-planning; **RF**: representative filtering; **CP**: curriculum pacing.

## **Evaluation: System Cost**

Our system is resource-efficient.

- It saves up to 3000.0× network traffic. (Fig. 1)
- It reduces up to 41.2× energy consumption. (Fig. 2)
- It reduces the **memory usage** by 4.5×. (Fig. 3)

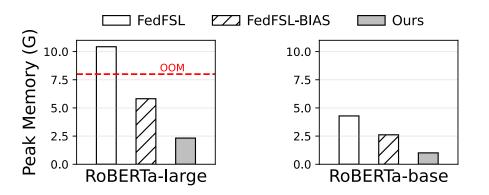


Fig. 3: Memory footprint of on-device training.

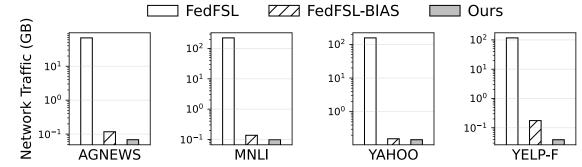


Fig. 1: The total network traffic of all clients.

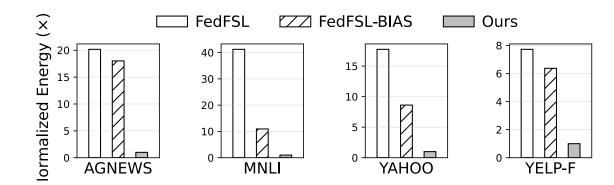


Fig. 2: The total energy consumption of all clients, normalized to that of ours

Dongqi Cai, Yaozong Wu, Shangguang Wang, Felix Xiaozhu Lin, Mengwei Xu

Contact: cdq@bupt.edu.cn

#### Conclusion

• Our system is a FedFSL framework that enables practical few-shot NLP fine-tuning on federated mobile devices.



Dongqi Cai, Yaozong Wu, Shangguang Wang, Felix Xiaozhu Lin, Mengwei Xu

Contact: cdq@bupt.edu.cn

#### Conclusion

- Our system is a FedFSL framework that enables practical few-shot NLP fine-tuning on federated mobile devices.
- It incorporates pseudo labeling and prompt learning to achieve usable accuracy with only tens of data labels.



Dongqi Cai, Yaozong Wu, Shangguang Wang, Felix Xiaozhu Lin, Mengwei Xu

Contact: cdq@bupt.edu.cn

#### Conclusion

- Our system is a FedFSL framework that enables practical few-shot NLP fine-tuning on federated mobile devices.
- It incorporates pseudo labeling and prompt learning to achieve usable accuracy with only tens of data labels.
- At system aspect, it proposes three novel techniques, i.e., early filtering unlabeled data, reducing the tuning depth/capacity, and curriculum orchestrate them to address the unique challenge of huge resource cost raised by its algorithmic.



Dongqi Cai, Yaozong Wu, Shangguang Wang, Felix Xiaozhu Lin, Mengwei Xu

#### Conclusion

- Our system is a FedFSL framework that enables practical few-shot NLP fine-tuning on federated mobile devices.
- It incorporates pseudo labeling and prompt learning to achieve usable accuracy with only tens of data labels.
- At system aspect, it proposes three novel techniques, i.e., early filtering unlabeled data, reducing the tuning depth/capacity, and curriculum orchestrate them to address the unique challenge of huge resource cost raised by its algorithmic.
- Compared to vanilla FedFSL, Our system reduces the training delay, client energy, and network traffic by up to 46.0×, 41.2× and 3000.0×, respectively.



# Concluding Remarks by Mengwei

- The recent AI wave (large, foundational, multimodal models) is going to make another Golden Era for mobile computing.
  - Think of Smartphones/IoTs as humans-level assistants
- Two key research directions
  - Making LLMs run fast and learn rapidly on devices (hw-sw-algo. codesign)
  - Building killer apps atop LLMs (agents, searching, AIGC, etc)
- Open to collaboration and debate!
  - Who are we: a junior faculty plus a group of passionate graduate students who believe in LLM as a game changer to mobile research



















Generated by Stable Diffusion XL

#### Appendix for Q&A

## Different parameter-efficient methods

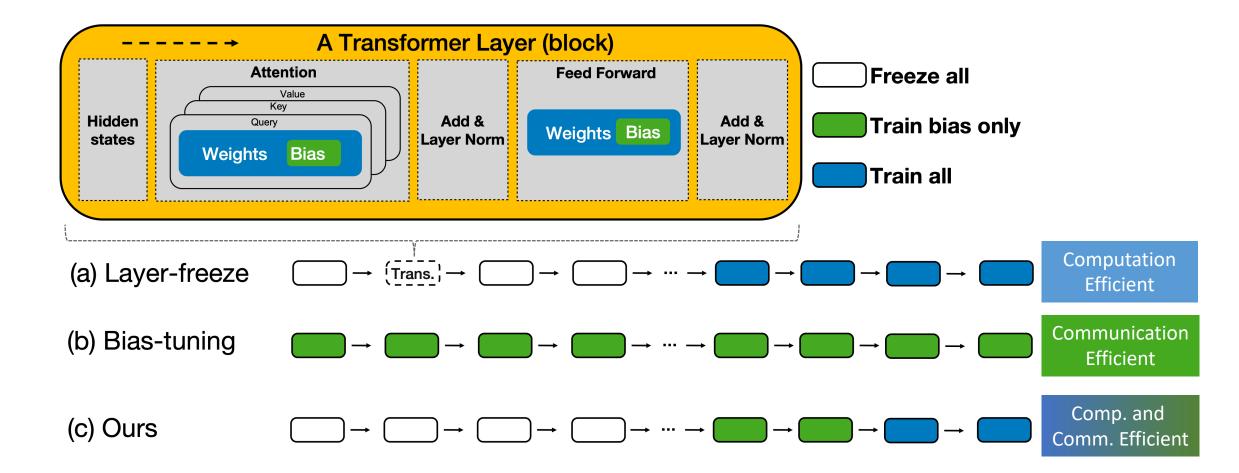
• Adapter is not only for "adapters".

• Parameter-efficient methods are unified (He, ICLR'22).

• Bias-tuning provides the best accuracy-efficiency tradeoff under fewshot learning scenarios (Logan, ACL'22).

He, Junxian, et al. "Towards a Unified View of Parameter-Efficient Transfer Learning.", ICLR 2022. Logan R L, et al. "Cutting Down on Prompts and Parameters: Simple Few-Shot Learning with Language Models", ACL 2022.

#### Design 2: Training Depth/Capacity Co-planning



# Preliminary: FedFSL performance and cost

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Full-set                     | Vanilla-                                                              | Prompt-                                                      | Pseudo-                                                              | Both                                                                         | Satisfactory accuracy                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Dataset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (oracle)                     | FedFSL                                                                | Only                                                         | Only                                                                 | (Ours)                                                                       |                                                                                                          |
| AGNEWS (skewed)<br>MNLI (skewed)<br>YAHOO (skewed)<br>YELP-F (skewed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 93.0<br>85.0<br>78.0<br>70.0 | $64.8 \pm 3.1$<br>$37.7 \pm 5.6$<br>$24.4 \pm 10.3$<br>$38.3 \pm 8.8$ | $68.4\pm2.4$<br>$42.4\pm5.8$<br>$41.8\pm4.3$<br>$51.2\pm1.8$ | $67.5 \pm 1.3$<br>$42.7 \pm 6.3$<br>$31.0 \pm 2.0$<br>$45.7 \pm 4.4$ | <b>90.2</b> ±0.5<br><b>77.4</b> ±1.2<br><b>66.9</b> ±1.1<br><b>58.2</b> ±2.4 | Both pseudo labeling<br>and prompt learning<br>are indispensable.                                        |
| YELP-F (uniform)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70.0                         | 54.0±0.1                                                              | 58.1±1.5                                                     | 57.0±2.2                                                             | <b>61.9</b> ±0.7                                                             |                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ERT-ba e ur a                | e 📰 RoB R                                                             | a- a: e 🖂 Ro                                                 | BERTa-large                                                          |                                                                              | Huge system cost                                                                                         |
| 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - | Jetson TX2                   | BC                                                                    | 0.4<br>0.2<br>0.0<br>YELP-F                                  | • Pro                                                                | ompt <b>learn</b> i                                                          | device <b>inference</b> .<br>i <b>ng</b> needs <u>large</u> NLP model.<br><b>orchestration</b> workflow. |

#### Paths towards practical federated learning

