
Federated Few-shot Learning
for Mobile NLP

Dongqi Cai1, Shangguang Wang1, Yaozong Wu1, Felix Xiaozhu Lin2, Mengwei Xu1

The 29th Annual International Conference 
On Mobile Computing And Networking

1 Beiyou Shenzhen Institute
2 University of Virginia



1

Pre-training
Fine-tuning

Fine-tuning

Fine-tuning

…

Text Clssification.

Seq. Tagging

Text Generation.

Deployment

…

Public, centralized

Private, geo-distributed

BERT, 
DistilBERT, 
BART, GPT, etc

…

Cloud Cloud&Clients Clients

FedNLP: focus of our work

Dongqi Cai (蔡栋琪) @ CS Dept of BUPT
EuroMLSys’23: 
Towards Practical FedFSL 1/35



2

Pre-training
Fine-tuning

Fine-tuning

Fine-tuning

…

Text Clssification.

Seq. Tagging

Text Generation.

Deployment

…

Public, centralized

Private, geo-distributed

BERT, 
DistilBERT, 
BART, GPT, etc

…

Cloud Cloud&Clients Clients

FedNLP: focus of our work

Dongqi Cai (蔡栋琪) @ CS Dept of BUPT
EuroMLSys’23: 
Towards Practical FedFSL

Where is the training data coming from?

2/35



(a) Classic FL: rely on abundant labels (b) Our FedFSL Scenario
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Background: Pseudo labeling

The rational behind pseudo labeling:

“Training with pseudo labels encourages the 
model to learn a decision boundary that lies 
in a region where the example density is 
lower. ”

Data with pseudo labels

Local Model

Data without labels

For example, 
“great”:0.9, “bad”:0.1 rather than “great”:0.6, “bad”:0.4
Low class overlap       Low entropy
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Background: Prompt learning

■ T1 (label = +1): “Most delicious pizza I’ve ever had.” 
■ T2 (label = -1): “You can get better sushi for half the price.” 
■ T3 (label = ?): Pizza was good. Not worth the price.
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Preliminary: FedFSL performanceFederated Few-Shot Learning for Mobile NLP ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

other: pseudo labeling heavily relies on the initial model accu-
racy to get enough, correct labels, for which prompt learning
can help; in turn, prompt learning’s ability is limited to the
few number of data labels and especially their skewed distri-
bution, for which pseudo labeling can help. Therefore, we
construct an enhanced FedFSL work�ow by orchestrating
the two techniques atop FedNLP, shown in Fig. 2. This en-
hanced work�ow is the algorithmic foundation of our future
design, and is still dubbed as FedFSL for simplicity.

Our goal is to �ne-tune a pre-trained language model M
based on distributed clients’ data. We assume that each client
has a tiny training set with labels T (typically < 10) and a
much larger set of unlabeled samples D (typically > 1000).
In general, FeS consists of two loosely-coupled runtimes
residing in a central server.
• Inference runtime that continously generates new pseudo
labels on clients. Per 5 training rounds, it dispatches the
global M to = clients, where the model exhaustively infer-
ences on each local unlabeled data Ĝ 2 ⇡ and generates a
pseudo label ~̂. The data with the top : highest con�dence
(i.e., ;>68CB) are added as training samples. In subsequent
training rounds, pseudo labels are treated equally as the
gold labels. The pseudo labels that are generated in pre-
vious rounds will also be re-labeled to avoid forgetting
events [80]. The above hyper-parameters < 5 ,=,: > indi-
cate how inference runtime paces.

• Training runtime that follows a typical federated learn-
ing work�ow to �ne-tune M . Per round, the runtime
dispatches the global M to a random set of clients with
at least one gold or pseudo label. The on-device train-
ing is assisted with prompts, provided by the trainers ei-
ther in hand-crafted or automatic manner [28, 30, 55–57].
The updated models are then aggregated (default FedAvg
protocol [61]) on the server as the new global M . The
process continues till M reaches a satisfactory accuracy.
Notably, such a design is compatible with prior FL lit-
erature on client/data sampling [47, 50–52, 94], privacy
enhancements [24, 105], and communication optimiza-
tion [6, 88, 91].

2.4 Experimental Observations
Based on the FedFSL work�ow presented above, we perform
a set of early experiments on its performance. The results
highlight the two sides of a coin: a satisfactory model accu-
racy yet huge resource cost on clients.
Observation-1: FedFSL achieves satisfactory accuracy with

scarce data labels; for which both pseudo labeling and prompt
learning are indispensable. Table 1 shows the convergence
accuracy of RoBERTa-large [58] on 4 popular NLP datasets3.
With only 64 data labels (0.005%–0.05% of the total dataset),
3You can �nd a detailed description of the datasets in §4.1.

Dataset Full-set
(oracle)

Vanilla-
FedFSL

Prompt-
Only

Pseudo-
Only

Both
(Ours)

AGNEWS (skewed) 93.0 64.8±3.1 68.4±2.4 67.5±1.3 90.2±0.5
MNLI (skewed) 85.0 37.7±5.6 42.4±5.8 42.7±6.3 77.4±1.2
YAHOO (skewed) 78.0 24.4±10.3 41.8±4.3 31.0±2.0 66.9±1.1
YELP-F (skewed) 70.0 38.3±8.8 51.2±1.8 45.7±4.4 58.2±2.4
YELP-F (uniform) 70.0 54.0±0.1 58.1±1.5 57.0±2.2 61.9±0.7

Table 1: Convergence accuracy with 64 gold labels.
“Full-Set” assumes every data is labeled (an oracle
case). “skewed” means the gold labels are located on
few clients instead of uniformly distributed across
clients.

Figure 3: FedFSL convergence performance with dif-
ferent models and datasets. Batch size: 4.

FedFSL achieves 85.8%–97.0% relatively convergence accu-
racy to the full-set �ne-tuning that assumes all data samples
are labeled. The accuracy could be further boosted by involv-
ing more data labels. Neither pseudo labeling nor prompt
learning alone is enough to exhibit a usable accuracy. With
only one of them, the relative convergence accuracy is 40%–
74%. Furthermore, the skewed label distribution challenges
the task: on YELP-F, a vanilla FedNLP method results in
much higher accuracy when the labels are uniformaly dis-
tributed; neverthelss, the challenge is mostly addressed by
FedFSL that achieves satisfactory accuracy in both cases.
Observation-2: FedFSL incurs huge system cost. Our exper-

iments highlight the excessive system cost (Figure 3), as
against the commonsense that few-shot learning is usually
fast and lightweight [20, 25, 31, 107]. For example, training
RoBERTa-large on AGNEWS takes 3.3 hours to converge, 7.3
million Joules of energy, 68.4 GBs of network transmission,
and 10.4 GB peak memory. The cost is about 1.4⇥ higher than
a full-set supervised FedNLP process on the same model and
dataset. We then dive deeper into the implications behind
and identify three challenges for a resource-e�cient FedFSL
system.

• Orchestrating training and inference FedFSL has
two coupled components: a federated learning runtime that
continuously updates a global model; an inference runtime
that keeps generating pseudo labels. The two components
must be paced harmoniously: the inference runtime gener-
ating too few pseudo labels could slow down the training;
otherwise, generating too many pseudo labels could lead to
resource waste or even excessive erroneous labels, especially
when the global model is still weak. A mechanism to orches-
trate the two components must be dynamic to �t the model
learning progress.
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Notably, such a design is compatible with prior FL lit-
erature on client/data sampling [47, 50–52, 94], privacy
enhancements [24, 105], and communication optimiza-
tion [6, 88, 91].

2.4 Experimental Observations
Based on the FedFSL work�ow presented above, we perform
a set of early experiments on its performance. The results
highlight the two sides of a coin: a satisfactory model accu-
racy yet huge resource cost on clients.
Observation-1: FedFSL achieves satisfactory accuracy with

scarce data labels; for which both pseudo labeling and prompt
learning are indispensable. Table 1 shows the convergence
accuracy of RoBERTa-large [58] on 4 popular NLP datasets3.
With only 64 data labels (0.005%–0.05% of the total dataset),
3You can �nd a detailed description of the datasets in §4.1.

Dataset Full-set
(oracle)

Vanilla-
FedFSL

Prompt-
Only

Pseudo-
Only

Both
(Ours)

AGNEWS (skewed) 93.0 64.8±3.1 68.4±2.4 67.5±1.3 90.2±0.5
MNLI (skewed) 85.0 37.7±5.6 42.4±5.8 42.7±6.3 77.4±1.2
YAHOO (skewed) 78.0 24.4±10.3 41.8±4.3 31.0±2.0 66.9±1.1
YELP-F (skewed) 70.0 38.3±8.8 51.2±1.8 45.7±4.4 58.2±2.4
YELP-F (uniform) 70.0 54.0±0.1 58.1±1.5 57.0±2.2 61.9±0.7

Table 1: Convergence accuracy with 64 gold labels.
“Full-Set” assumes every data is labeled (an oracle
case). “skewed” means the gold labels are located on
few clients instead of uniformly distributed across
clients.

Figure 3: FedFSL convergence performance with dif-
ferent models and datasets. Batch size: 4.

FedFSL achieves 85.8%–97.0% relatively convergence accu-
racy to the full-set �ne-tuning that assumes all data samples
are labeled. The accuracy could be further boosted by involv-
ing more data labels. Neither pseudo labeling nor prompt
learning alone is enough to exhibit a usable accuracy. With
only one of them, the relative convergence accuracy is 40%–
74%. Furthermore, the skewed label distribution challenges
the task: on YELP-F, a vanilla FedNLP method results in
much higher accuracy when the labels are uniformaly dis-
tributed; neverthelss, the challenge is mostly addressed by
FedFSL that achieves satisfactory accuracy in both cases.
Observation-2: FedFSL incurs huge system cost. Our exper-

iments highlight the excessive system cost (Figure 3), as
against the commonsense that few-shot learning is usually
fast and lightweight [20, 25, 31, 107]. For example, training
RoBERTa-large on AGNEWS takes 3.3 hours to converge, 7.3
million Joules of energy, 68.4 GBs of network transmission,
and 10.4 GB peak memory. The cost is about 1.4⇥ higher than
a full-set supervised FedNLP process on the same model and
dataset. We then dive deeper into the implications behind
and identify three challenges for a resource-e�cient FedFSL
system.

• Orchestrating training and inference FedFSL has
two coupled components: a federated learning runtime that
continuously updates a global model; an inference runtime
that keeps generating pseudo labels. The two components
must be paced harmoniously: the inference runtime gener-
ating too few pseudo labels could slow down the training;
otherwise, generating too many pseudo labels could lead to
resource waste or even excessive erroneous labels, especially
when the global model is still weak. A mechanism to orches-
trate the two components must be dynamic to �t the model
learning progress.
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• Mislabels are not uncommon.Mislabels are common in real
world, e.g., 6% in the well-established ImageNet or even
more than 10% in other crowd-sourced datasets [63]. In
FedFSL, since the labels from end users are merely im-
possible to be veri�ed, we expect an even higher ratio of
mislabels, which can signi�cantly harm the model quality.
Instead, trainers might only use the labels from very few,
highly trustworthy people.

In essence, we argue that few-shot is a more realistic way
to depict NLP training, a scenario we call as FedFSL. Unfor-
tunately, FedFSL, in particular its system implications, are
rarely investigated – in comparison, prior FL literature as-
sumes abundant data labels (at least hundreds of thousands)
uniformly distributed across clients.

2.2 Key Algorithm Blocks for FedFSL
In ML literature, there are two complementary approaches to
address the few-shot issue. One is to exploit the abundant un-
labeled data across clients. The other is to boost the model’s
ability of learning from few samples. For each approach, we
identify a technique; together, they form the algorithmic
foundation for FedFSL.

• Pseudo labeling [49] allows trainingwith few/zero
labeled samples andmanyunlabeled samples. As it trains
a model, the trainer makes the current model infer on unla-
beled data, and uses the inference results (i.e. pseudo labels)
as if they are true labels for successive training. The e�cacy
of pseudo labeling has been established both empirically
[19, 104] and theoretically [8, 49]. Intuitively, it works be-
cause training with pseudo labels encourages the model to
learn a decision boundary that lies in a region where the
example density is lower. Often, such a decision boundary
yields good generalization performance (i.e. higher model
accuracy), even though the true labels of individual sam-
ples remain unknown. In ML’s lingo, such a training strategy
roots in entropy regularization: the resultant model will make
a prediction on unlabeled data with low class overlap (e.g.
“great”:0.9, “bad”:0.1 rather than “great”:0.6, “bad”:0.4) and
therefore low entropy. Pseudo labeling also tackles the chal-
lenge of skewed distribution of label classes. Since pseudo
labeling involves more clients and therefore more diversi�ed
label classes for training, the �ne-tuned model is likely to be
more unbiased and accurate.

• Prompt learning [56] is a powerful NLP technique that
boosts accuracy in model �ne-tuning, which is commonly
used in few-shot scenarios [30, 57, 59, 71]. For FedFSL, we
�nd prompts crucial to the early stage of a training sessions,
when the model is weak and can barely generate useful
pseudo labels.

Given a task, standard NLP �ne-tuning (without prompts)
trains a new classi�cation layer from scratch, which requires

Inference Training

ith iteration

ith+1 iteration

jth iteration

jth+f iteration

# of labelsClients
Updated model Updated labels

…

…
model

model

model

Figure 2: Work�ow of FedFSL with pseudo labeling.
supervision from substantial labeled data. For example, sup-
pose we �ne-tune a foundation model to classify YELP re-
views [108] and are only given two labeled samples [71]:
⌅ T1 (label=L1): “Most delicious pizza I’ve ever had.”
⌅ T2 (label=L2): “You can get better sushi for half the price.”

With such few samples, training a usable classi�cation
layer is impossible. Consider an unlabeled example:
⌅ T3 (label=?): Pizza was good. Not worth the price.

The model may predict T3’s class probabilities closer to
L1 if the task is to classify user satisfaction, or closer to L2 if
the task is about whether price is mentioned. But without
such a task description, the model can only randomly guess
and generate an error-prone pseudo label.

To �x the problem, the insight of prompt learning is that
the foundation model already encodes knowledge for per-
forming various tasks; it just needs a prompt that describes
what the task is.

In the example above, if ML developers augment all sam-
ples with a leading prompt, e.g. T3 becomes:

"It was <MASK>. Pizza was good..."

Then all input samples are reformulated as cloze-style
phrases, which are exactly what the foundation model was
pre-trained for – to predict missing words (masked out) in
text. Next, the predicted masked word is mapped to a class,
yielding a label. For instance, a predicted word “terrible” will
map to label 1 and “great” will map to label 5. Compared
to initializing a whole classi�cation layer from scratch, the
foundation model with prompts requires less �netuning be-
fore it can output labels with higher accuracy; in FedFSL,
this means that the pseudo labels are less erroneous.
More formally, a cloze question is called a pattern and

the mapping from words to classes is done by a verbalizer.
Given a task, there exist multiple possible pattern/verbalizer
pairs. The training loss is the cross-entropy between the
correct answer and the distribution of probabilities among
the tokens in the verbalizer. See recent surveys on prompt
learning [12, 56] for more details.

2.3 Our System Model
Systemmodel: FedFSLwork�ow enhancedwith above
techniques We notice that pseudo labeling and prompt
learning can well orchestrate and be complimentary to each
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2.3 Our System Model
Systemmodel: FedFSLwork�ow enhancedwith above
techniques We notice that pseudo labeling and prompt
learning can well orchestrate and be complimentary to each

n: number of clients selected to 
perform pseudo labeling

f: frequency of updating pseudo labels

k: ratio of selected pseudo labels for 
the subsequent training

Pacing configuration <f,n,k>
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• Mislabels are not uncommon.Mislabels are common in real
world, e.g., 6% in the well-established ImageNet or even
more than 10% in other crowd-sourced datasets [63]. In
FedFSL, since the labels from end users are merely im-
possible to be veri�ed, we expect an even higher ratio of
mislabels, which can signi�cantly harm the model quality.
Instead, trainers might only use the labels from very few,
highly trustworthy people.

In essence, we argue that few-shot is a more realistic way
to depict NLP training, a scenario we call as FedFSL. Unfor-
tunately, FedFSL, in particular its system implications, are
rarely investigated – in comparison, prior FL literature as-
sumes abundant data labels (at least hundreds of thousands)
uniformly distributed across clients.

2.2 Key Algorithm Blocks for FedFSL
In ML literature, there are two complementary approaches to
address the few-shot issue. One is to exploit the abundant un-
labeled data across clients. The other is to boost the model’s
ability of learning from few samples. For each approach, we
identify a technique; together, they form the algorithmic
foundation for FedFSL.

• Pseudo labeling [49] allows trainingwith few/zero
labeled samples andmanyunlabeled samples. As it trains
a model, the trainer makes the current model infer on unla-
beled data, and uses the inference results (i.e. pseudo labels)
as if they are true labels for successive training. The e�cacy
of pseudo labeling has been established both empirically
[19, 104] and theoretically [8, 49]. Intuitively, it works be-
cause training with pseudo labels encourages the model to
learn a decision boundary that lies in a region where the
example density is lower. Often, such a decision boundary
yields good generalization performance (i.e. higher model
accuracy), even though the true labels of individual sam-
ples remain unknown. In ML’s lingo, such a training strategy
roots in entropy regularization: the resultant model will make
a prediction on unlabeled data with low class overlap (e.g.
“great”:0.9, “bad”:0.1 rather than “great”:0.6, “bad”:0.4) and
therefore low entropy. Pseudo labeling also tackles the chal-
lenge of skewed distribution of label classes. Since pseudo
labeling involves more clients and therefore more diversi�ed
label classes for training, the �ne-tuned model is likely to be
more unbiased and accurate.

• Prompt learning [56] is a powerful NLP technique that
boosts accuracy in model �ne-tuning, which is commonly
used in few-shot scenarios [30, 57, 59, 71]. For FedFSL, we
�nd prompts crucial to the early stage of a training sessions,
when the model is weak and can barely generate useful
pseudo labels.

Given a task, standard NLP �ne-tuning (without prompts)
trains a new classi�cation layer from scratch, which requires
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Figure 2: Work�ow of FedFSL with pseudo labeling.
supervision from substantial labeled data. For example, sup-
pose we �ne-tune a foundation model to classify YELP re-
views [108] and are only given two labeled samples [71]:
⌅ T1 (label=L1): “Most delicious pizza I’ve ever had.”
⌅ T2 (label=L2): “You can get better sushi for half the price.”

With such few samples, training a usable classi�cation
layer is impossible. Consider an unlabeled example:
⌅ T3 (label=?): Pizza was good. Not worth the price.

The model may predict T3’s class probabilities closer to
L1 if the task is to classify user satisfaction, or closer to L2 if
the task is about whether price is mentioned. But without
such a task description, the model can only randomly guess
and generate an error-prone pseudo label.

To �x the problem, the insight of prompt learning is that
the foundation model already encodes knowledge for per-
forming various tasks; it just needs a prompt that describes
what the task is.

In the example above, if ML developers augment all sam-
ples with a leading prompt, e.g. T3 becomes:

"It was <MASK>. Pizza was good..."

Then all input samples are reformulated as cloze-style
phrases, which are exactly what the foundation model was
pre-trained for – to predict missing words (masked out) in
text. Next, the predicted masked word is mapped to a class,
yielding a label. For instance, a predicted word “terrible” will
map to label 1 and “great” will map to label 5. Compared
to initializing a whole classi�cation layer from scratch, the
foundation model with prompts requires less �netuning be-
fore it can output labels with higher accuracy; in FedFSL,
this means that the pseudo labels are less erroneous.
More formally, a cloze question is called a pattern and

the mapping from words to classes is done by a verbalizer.
Given a task, there exist multiple possible pattern/verbalizer
pairs. The training loss is the cross-entropy between the
correct answer and the distribution of probabilities among
the tokens in the verbalizer. See recent surveys on prompt
learning [12, 56] for more details.

2.3 Our System Model
Systemmodel: FedFSLwork�ow enhancedwith above
techniques We notice that pseudo labeling and prompt
learning can well orchestrate and be complimentary to each

n: number of clients selected to 
perform pseudo labeling

f: frequency of updating pseudo labels

k: ratio of selected pseudo labels for 
the subsequent training

Pacing configuration <f,n,k>
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• Mislabels are not uncommon.Mislabels are common in real
world, e.g., 6% in the well-established ImageNet or even
more than 10% in other crowd-sourced datasets [63]. In
FedFSL, since the labels from end users are merely im-
possible to be veri�ed, we expect an even higher ratio of
mislabels, which can signi�cantly harm the model quality.
Instead, trainers might only use the labels from very few,
highly trustworthy people.

In essence, we argue that few-shot is a more realistic way
to depict NLP training, a scenario we call as FedFSL. Unfor-
tunately, FedFSL, in particular its system implications, are
rarely investigated – in comparison, prior FL literature as-
sumes abundant data labels (at least hundreds of thousands)
uniformly distributed across clients.

2.2 Key Algorithm Blocks for FedFSL
In ML literature, there are two complementary approaches to
address the few-shot issue. One is to exploit the abundant un-
labeled data across clients. The other is to boost the model’s
ability of learning from few samples. For each approach, we
identify a technique; together, they form the algorithmic
foundation for FedFSL.

• Pseudo labeling [49] allows trainingwith few/zero
labeled samples andmanyunlabeled samples. As it trains
a model, the trainer makes the current model infer on unla-
beled data, and uses the inference results (i.e. pseudo labels)
as if they are true labels for successive training. The e�cacy
of pseudo labeling has been established both empirically
[19, 104] and theoretically [8, 49]. Intuitively, it works be-
cause training with pseudo labels encourages the model to
learn a decision boundary that lies in a region where the
example density is lower. Often, such a decision boundary
yields good generalization performance (i.e. higher model
accuracy), even though the true labels of individual sam-
ples remain unknown. In ML’s lingo, such a training strategy
roots in entropy regularization: the resultant model will make
a prediction on unlabeled data with low class overlap (e.g.
“great”:0.9, “bad”:0.1 rather than “great”:0.6, “bad”:0.4) and
therefore low entropy. Pseudo labeling also tackles the chal-
lenge of skewed distribution of label classes. Since pseudo
labeling involves more clients and therefore more diversi�ed
label classes for training, the �ne-tuned model is likely to be
more unbiased and accurate.

• Prompt learning [56] is a powerful NLP technique that
boosts accuracy in model �ne-tuning, which is commonly
used in few-shot scenarios [30, 57, 59, 71]. For FedFSL, we
�nd prompts crucial to the early stage of a training sessions,
when the model is weak and can barely generate useful
pseudo labels.

Given a task, standard NLP �ne-tuning (without prompts)
trains a new classi�cation layer from scratch, which requires
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supervision from substantial labeled data. For example, sup-
pose we �ne-tune a foundation model to classify YELP re-
views [108] and are only given two labeled samples [71]:
⌅ T1 (label=L1): “Most delicious pizza I’ve ever had.”
⌅ T2 (label=L2): “You can get better sushi for half the price.”

With such few samples, training a usable classi�cation
layer is impossible. Consider an unlabeled example:
⌅ T3 (label=?): Pizza was good. Not worth the price.

The model may predict T3’s class probabilities closer to
L1 if the task is to classify user satisfaction, or closer to L2 if
the task is about whether price is mentioned. But without
such a task description, the model can only randomly guess
and generate an error-prone pseudo label.

To �x the problem, the insight of prompt learning is that
the foundation model already encodes knowledge for per-
forming various tasks; it just needs a prompt that describes
what the task is.

In the example above, if ML developers augment all sam-
ples with a leading prompt, e.g. T3 becomes:

"It was <MASK>. Pizza was good..."

Then all input samples are reformulated as cloze-style
phrases, which are exactly what the foundation model was
pre-trained for – to predict missing words (masked out) in
text. Next, the predicted masked word is mapped to a class,
yielding a label. For instance, a predicted word “terrible” will
map to label 1 and “great” will map to label 5. Compared
to initializing a whole classi�cation layer from scratch, the
foundation model with prompts requires less �netuning be-
fore it can output labels with higher accuracy; in FedFSL,
this means that the pseudo labels are less erroneous.
More formally, a cloze question is called a pattern and

the mapping from words to classes is done by a verbalizer.
Given a task, there exist multiple possible pattern/verbalizer
pairs. The training loss is the cross-entropy between the
correct answer and the distribution of probabilities among
the tokens in the verbalizer. See recent surveys on prompt
learning [12, 56] for more details.

2.3 Our System Model
Systemmodel: FedFSLwork�ow enhancedwith above
techniques We notice that pseudo labeling and prompt
learning can well orchestrate and be complimentary to each

n: number of clients selected to 
perform pseudo labeling

f: frequency of updating pseudo labels

k: ratio of selected pseudo labels for 
the subsequent training

Pacing configuration <f,n,k>
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• Mislabels are not uncommon.Mislabels are common in real
world, e.g., 6% in the well-established ImageNet or even
more than 10% in other crowd-sourced datasets [63]. In
FedFSL, since the labels from end users are merely im-
possible to be veri�ed, we expect an even higher ratio of
mislabels, which can signi�cantly harm the model quality.
Instead, trainers might only use the labels from very few,
highly trustworthy people.

In essence, we argue that few-shot is a more realistic way
to depict NLP training, a scenario we call as FedFSL. Unfor-
tunately, FedFSL, in particular its system implications, are
rarely investigated – in comparison, prior FL literature as-
sumes abundant data labels (at least hundreds of thousands)
uniformly distributed across clients.

2.2 Key Algorithm Blocks for FedFSL
In ML literature, there are two complementary approaches to
address the few-shot issue. One is to exploit the abundant un-
labeled data across clients. The other is to boost the model’s
ability of learning from few samples. For each approach, we
identify a technique; together, they form the algorithmic
foundation for FedFSL.

• Pseudo labeling [49] allows trainingwith few/zero
labeled samples andmanyunlabeled samples. As it trains
a model, the trainer makes the current model infer on unla-
beled data, and uses the inference results (i.e. pseudo labels)
as if they are true labels for successive training. The e�cacy
of pseudo labeling has been established both empirically
[19, 104] and theoretically [8, 49]. Intuitively, it works be-
cause training with pseudo labels encourages the model to
learn a decision boundary that lies in a region where the
example density is lower. Often, such a decision boundary
yields good generalization performance (i.e. higher model
accuracy), even though the true labels of individual sam-
ples remain unknown. In ML’s lingo, such a training strategy
roots in entropy regularization: the resultant model will make
a prediction on unlabeled data with low class overlap (e.g.
“great”:0.9, “bad”:0.1 rather than “great”:0.6, “bad”:0.4) and
therefore low entropy. Pseudo labeling also tackles the chal-
lenge of skewed distribution of label classes. Since pseudo
labeling involves more clients and therefore more diversi�ed
label classes for training, the �ne-tuned model is likely to be
more unbiased and accurate.

• Prompt learning [56] is a powerful NLP technique that
boosts accuracy in model �ne-tuning, which is commonly
used in few-shot scenarios [30, 57, 59, 71]. For FedFSL, we
�nd prompts crucial to the early stage of a training sessions,
when the model is weak and can barely generate useful
pseudo labels.

Given a task, standard NLP �ne-tuning (without prompts)
trains a new classi�cation layer from scratch, which requires
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supervision from substantial labeled data. For example, sup-
pose we �ne-tune a foundation model to classify YELP re-
views [108] and are only given two labeled samples [71]:
⌅ T1 (label=L1): “Most delicious pizza I’ve ever had.”
⌅ T2 (label=L2): “You can get better sushi for half the price.”

With such few samples, training a usable classi�cation
layer is impossible. Consider an unlabeled example:
⌅ T3 (label=?): Pizza was good. Not worth the price.

The model may predict T3’s class probabilities closer to
L1 if the task is to classify user satisfaction, or closer to L2 if
the task is about whether price is mentioned. But without
such a task description, the model can only randomly guess
and generate an error-prone pseudo label.

To �x the problem, the insight of prompt learning is that
the foundation model already encodes knowledge for per-
forming various tasks; it just needs a prompt that describes
what the task is.

In the example above, if ML developers augment all sam-
ples with a leading prompt, e.g. T3 becomes:

"It was <MASK>. Pizza was good..."

Then all input samples are reformulated as cloze-style
phrases, which are exactly what the foundation model was
pre-trained for – to predict missing words (masked out) in
text. Next, the predicted masked word is mapped to a class,
yielding a label. For instance, a predicted word “terrible” will
map to label 1 and “great” will map to label 5. Compared
to initializing a whole classi�cation layer from scratch, the
foundation model with prompts requires less �netuning be-
fore it can output labels with higher accuracy; in FedFSL,
this means that the pseudo labels are less erroneous.
More formally, a cloze question is called a pattern and

the mapping from words to classes is done by a verbalizer.
Given a task, there exist multiple possible pattern/verbalizer
pairs. The training loss is the cross-entropy between the
correct answer and the distribution of probabilities among
the tokens in the verbalizer. See recent surveys on prompt
learning [12, 56] for more details.

2.3 Our System Model
Systemmodel: FedFSLwork�ow enhancedwith above
techniques We notice that pseudo labeling and prompt
learning can well orchestrate and be complimentary to each

n: number of clients selected to 
perform pseudo labeling

f: frequency of updating pseudo labels

k: ratio of selected pseudo labels for 
the subsequent training

• Progressively speed up the pseudo labeling speed, i.e., adding more pseudo labels at a higher frequency.

Pacing configuration <f,n,k>
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• Mislabels are not uncommon.Mislabels are common in real
world, e.g., 6% in the well-established ImageNet or even
more than 10% in other crowd-sourced datasets [63]. In
FedFSL, since the labels from end users are merely im-
possible to be veri�ed, we expect an even higher ratio of
mislabels, which can signi�cantly harm the model quality.
Instead, trainers might only use the labels from very few,
highly trustworthy people.

In essence, we argue that few-shot is a more realistic way
to depict NLP training, a scenario we call as FedFSL. Unfor-
tunately, FedFSL, in particular its system implications, are
rarely investigated – in comparison, prior FL literature as-
sumes abundant data labels (at least hundreds of thousands)
uniformly distributed across clients.

2.2 Key Algorithm Blocks for FedFSL
In ML literature, there are two complementary approaches to
address the few-shot issue. One is to exploit the abundant un-
labeled data across clients. The other is to boost the model’s
ability of learning from few samples. For each approach, we
identify a technique; together, they form the algorithmic
foundation for FedFSL.

• Pseudo labeling [49] allows trainingwith few/zero
labeled samples andmanyunlabeled samples. As it trains
a model, the trainer makes the current model infer on unla-
beled data, and uses the inference results (i.e. pseudo labels)
as if they are true labels for successive training. The e�cacy
of pseudo labeling has been established both empirically
[19, 104] and theoretically [8, 49]. Intuitively, it works be-
cause training with pseudo labels encourages the model to
learn a decision boundary that lies in a region where the
example density is lower. Often, such a decision boundary
yields good generalization performance (i.e. higher model
accuracy), even though the true labels of individual sam-
ples remain unknown. In ML’s lingo, such a training strategy
roots in entropy regularization: the resultant model will make
a prediction on unlabeled data with low class overlap (e.g.
“great”:0.9, “bad”:0.1 rather than “great”:0.6, “bad”:0.4) and
therefore low entropy. Pseudo labeling also tackles the chal-
lenge of skewed distribution of label classes. Since pseudo
labeling involves more clients and therefore more diversi�ed
label classes for training, the �ne-tuned model is likely to be
more unbiased and accurate.

• Prompt learning [56] is a powerful NLP technique that
boosts accuracy in model �ne-tuning, which is commonly
used in few-shot scenarios [30, 57, 59, 71]. For FedFSL, we
�nd prompts crucial to the early stage of a training sessions,
when the model is weak and can barely generate useful
pseudo labels.

Given a task, standard NLP �ne-tuning (without prompts)
trains a new classi�cation layer from scratch, which requires
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Figure 2: Work�ow of FedFSL with pseudo labeling.
supervision from substantial labeled data. For example, sup-
pose we �ne-tune a foundation model to classify YELP re-
views [108] and are only given two labeled samples [71]:
⌅ T1 (label=L1): “Most delicious pizza I’ve ever had.”
⌅ T2 (label=L2): “You can get better sushi for half the price.”

With such few samples, training a usable classi�cation
layer is impossible. Consider an unlabeled example:
⌅ T3 (label=?): Pizza was good. Not worth the price.

The model may predict T3’s class probabilities closer to
L1 if the task is to classify user satisfaction, or closer to L2 if
the task is about whether price is mentioned. But without
such a task description, the model can only randomly guess
and generate an error-prone pseudo label.

To �x the problem, the insight of prompt learning is that
the foundation model already encodes knowledge for per-
forming various tasks; it just needs a prompt that describes
what the task is.

In the example above, if ML developers augment all sam-
ples with a leading prompt, e.g. T3 becomes:

"It was <MASK>. Pizza was good..."

Then all input samples are reformulated as cloze-style
phrases, which are exactly what the foundation model was
pre-trained for – to predict missing words (masked out) in
text. Next, the predicted masked word is mapped to a class,
yielding a label. For instance, a predicted word “terrible” will
map to label 1 and “great” will map to label 5. Compared
to initializing a whole classi�cation layer from scratch, the
foundation model with prompts requires less �netuning be-
fore it can output labels with higher accuracy; in FedFSL,
this means that the pseudo labels are less erroneous.
More formally, a cloze question is called a pattern and

the mapping from words to classes is done by a verbalizer.
Given a task, there exist multiple possible pattern/verbalizer
pairs. The training loss is the cross-entropy between the
correct answer and the distribution of probabilities among
the tokens in the verbalizer. See recent surveys on prompt
learning [12, 56] for more details.

2.3 Our System Model
Systemmodel: FedFSLwork�ow enhancedwith above
techniques We notice that pseudo labeling and prompt
learning can well orchestrate and be complimentary to each

n: number of clients selected to 
perform pseudo labeling

f: frequency of updating pseudo labels

k: ratio of selected pseudo labels for 
the subsequent training

• Progressively speed up the pseudo labeling speed, i.e., adding more pseudo labels at a higher frequency.

• Progressive upgrading is only a coarse-grained plan, how to control the pace more concisely?

Pacing configuration <f,n,k>
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(a) Impacts of con�guration (b) AUG-E across rounds

Figure 4: AUG-E metric at early rounds (a) can help
identify the pacing con�gurations that perform well
in end-to-end training (b) regarding both accuracy and
system cost (the higher AUG-E, the better). < 5 ,=,: >
is the pacing con�guration. Dataset: MNLI [89].

Algorithm 1 describes how FeS leverages AUG-E for con-
�guration searching in details. At the beginning, FeS tries
each con�guration from an initial list we hand-picked through
extensive o�ine experiments (default size 32). After only a
few rounds, FeS evaluates those con�gurations using AUG-
E: the best one will be selected for future pseduo labeling
runtime (line 3, 10–16); the top-C (default 8) ones are packed
into a candidate list for future update in case (see below).
To understand how AUG-E helps predict those e�cient

con�gurations ahead, we pro�le 8 random con�gurations
< 5 ,=,: > and show their convergence performance and
AUG-E metric on MNLI dataset [89]. Figure 4 shows that
the most e�ective con�gurations with higher accuracy and
smaller training time would obtain a relatively higher AUG-
E score in the early stage of searching. For example, the
con�guration <1,4,2> with the highest AUG-E converges
at 72.0% accuracy (2nd highest) within 0.4 hours (fastest).
Therefore, we can use AUG-E as an indicator to the end-to-
end performance of di�erent pacing con�gurations.
Con�guration switching In practice, we observe few cases
that the picked con�guration performs badly as training goes
on. To mitigate the impacts of those corner cases, inspired
by [16], FeS adopts a con�guration switching mechanism at
online. As described in Algorithm 1, once training alarms
due to sharp accuracy degradation (line 6–8), i.e., AUG-E is
below zero or extremely low, FeS seeks to switch the pacing
con�guration (usually speeds up the inference). More specif-
ically, FeS repeats the con�guration searching as it does at
the beginning rounds (line 10–16), but only with the short
top-C list of candidates that are proven to be relative e�ective
as discussed above.
Cost analysis The cost of con�guration searching is negli-
gible as it spans only a few beginning rounds (typically 5);
and online switching on top-C con�gurations rarely happens
(typically < 2). Please note that the trials on di�erent con�g-
urations could be amortized by leveraging the large amount
of idle devices in federated learning [13, 96].
Wrongly labeled data If malicious clients are unluckily
selected, FeS could encounter unexpected behavior such as

low AUG-E score. Those wrongly labeled data will be �agged
as ‘unlabeled’. Subsequently, these data points undergo re-
labeling using our pseduo-labeling mechanism. Another ad-
vantage of FeS is that it requires only a small number of
labeled training data, often in the tens. Consequently, it be-
comes easier for the cloud to identify trustworthy clients
whose data labels are more likely to be accurate.

3.2 Representational Filtering
To circumvent the exhaustive labeling (model inference) of
all local data, an intuitive approach is to early �lter the data
that is likely to contribute minimally to subsequent training.
There are two key questions to be answered: (1) what metrics
shall be used to quantify the value of a sample if it is impor-
tant for training; (2) How can these metrics be e�ciently
extracted for each sample? Ideally, this process should be
decoupled from the NLP model that is being continuously
trained, allowing for an o�ine, one-pass operation.
Representativeness- anddiversity-aware score The key
idea of FeS is to jointly consider two data aspects: represen-
tativeness helps many text instances to �nd similar demon-
strations, thus reducing duplicate labeling (inferring) cost
for similar samples; diversity guarantees enough statistical
utility, thus increasing the total convergence performance.
To do so, FeS �rst computes a vector representation for

each unlabeled training instance (a sentence) G 2 X, by aver-
aging the output vector for each of its word using the proxy
model discussed below. For each sample G , we sort its : most
similar samples in terms of the cosine similarity between
the embedding vectors. Those example ids are denoted as
V(G). We denoted representative vector as E(D) = {G | D 2
V(G), G 2 X}. |E(D) | means the quantity of samples that
sample D is similar to. Bigger the |E(D) |, larger the represen-
tativeness.
Now let L andU denote the sets of already chosen sam-

ples and remaining samples, respectively. Initially, L = ;.
Every remaining sample D 2 U is scored as below:

score(D) =
’

G 2E(D)
d� | {V (G)\L} |, d > 1 (2)

where d discounts G that is close to the already selected in-
stances, thereby encouraging diversity. A sample with higher
score(D) would be preferred for labeling. Once it is selected,
it will move from U to L. Scores would be updated subse-
quently. According to Figure 5b, up to 95% online inferring
cost could be saved without harming convergence perfor-
mance apparently. This speeds up the end to end perfor-
mance signi�cantly.
Low-cost proxy model Existing importance-based �lter-
ing methods observe training loss [74], or weight norm [7,
43] to measure the importance of each training data. Those

Augment efficiency (AUG-E):
measure the gradient of the time-to-accuracy curve to search for an effective configuration with low cost 

Our system selects a configuration with best AUG-E from a candidate list (hand-picked through extensive 
offline experiments) for future pseudo labeling. 24/35
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(a) Impacts of con�guration (b) AUG-E across rounds

Figure 4: AUG-E metric at early rounds (a) can help
identify the pacing con�gurations that perform well
in end-to-end training (b) regarding both accuracy and
system cost (the higher AUG-E, the better). < 5 ,=,: >
is the pacing con�guration. Dataset: MNLI [89].

Algorithm 1 describes how FeS leverages AUG-E for con-
�guration searching in details. At the beginning, FeS tries
each con�guration from an initial list we hand-picked through
extensive o�ine experiments (default size 32). After only a
few rounds, FeS evaluates those con�gurations using AUG-
E: the best one will be selected for future pseduo labeling
runtime (line 3, 10–16); the top-C (default 8) ones are packed
into a candidate list for future update in case (see below).
To understand how AUG-E helps predict those e�cient

con�gurations ahead, we pro�le 8 random con�gurations
< 5 ,=,: > and show their convergence performance and
AUG-E metric on MNLI dataset [89]. Figure 4 shows that
the most e�ective con�gurations with higher accuracy and
smaller training time would obtain a relatively higher AUG-
E score in the early stage of searching. For example, the
con�guration <1,4,2> with the highest AUG-E converges
at 72.0% accuracy (2nd highest) within 0.4 hours (fastest).
Therefore, we can use AUG-E as an indicator to the end-to-
end performance of di�erent pacing con�gurations.
Con�guration switching In practice, we observe few cases
that the picked con�guration performs badly as training goes
on. To mitigate the impacts of those corner cases, inspired
by [16], FeS adopts a con�guration switching mechanism at
online. As described in Algorithm 1, once training alarms
due to sharp accuracy degradation (line 6–8), i.e., AUG-E is
below zero or extremely low, FeS seeks to switch the pacing
con�guration (usually speeds up the inference). More specif-
ically, FeS repeats the con�guration searching as it does at
the beginning rounds (line 10–16), but only with the short
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Cost analysis The cost of con�guration searching is negli-
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(typically < 2). Please note that the trials on di�erent con�g-
urations could be amortized by leveraging the large amount
of idle devices in federated learning [13, 96].
Wrongly labeled data If malicious clients are unluckily
selected, FeS could encounter unexpected behavior such as

low AUG-E score. Those wrongly labeled data will be �agged
as ‘unlabeled’. Subsequently, these data points undergo re-
labeling using our pseduo-labeling mechanism. Another ad-
vantage of FeS is that it requires only a small number of
labeled training data, often in the tens. Consequently, it be-
comes easier for the cloud to identify trustworthy clients
whose data labels are more likely to be accurate.

3.2 Representational Filtering
To circumvent the exhaustive labeling (model inference) of
all local data, an intuitive approach is to early �lter the data
that is likely to contribute minimally to subsequent training.
There are two key questions to be answered: (1) what metrics
shall be used to quantify the value of a sample if it is impor-
tant for training; (2) How can these metrics be e�ciently
extracted for each sample? Ideally, this process should be
decoupled from the NLP model that is being continuously
trained, allowing for an o�ine, one-pass operation.
Representativeness- anddiversity-aware score The key
idea of FeS is to jointly consider two data aspects: represen-
tativeness helps many text instances to �nd similar demon-
strations, thus reducing duplicate labeling (inferring) cost
for similar samples; diversity guarantees enough statistical
utility, thus increasing the total convergence performance.
To do so, FeS �rst computes a vector representation for

each unlabeled training instance (a sentence) G 2 X, by aver-
aging the output vector for each of its word using the proxy
model discussed below. For each sample G , we sort its : most
similar samples in terms of the cosine similarity between
the embedding vectors. Those example ids are denoted as
V(G). We denoted representative vector as E(D) = {G | D 2
V(G), G 2 X}. |E(D) | means the quantity of samples that
sample D is similar to. Bigger the |E(D) |, larger the represen-
tativeness.
Now let L andU denote the sets of already chosen sam-

ples and remaining samples, respectively. Initially, L = ;.
Every remaining sample D 2 U is scored as below:

score(D) =
’

G 2E(D)
d� | {V (G)\L} |, d > 1 (2)

where d discounts G that is close to the already selected in-
stances, thereby encouraging diversity. A sample with higher
score(D) would be preferred for labeling. Once it is selected,
it will move from U to L. Scores would be updated subse-
quently. According to Figure 5b, up to 95% online inferring
cost could be saved without harming convergence perfor-
mance apparently. This speeds up the end to end perfor-
mance signi�cantly.
Low-cost proxy model Existing importance-based �lter-
ing methods observe training loss [74], or weight norm [7,
43] to measure the importance of each training data. Those

Augment efficiency (AUG-E):
measure the gradient of the time-to-accuracy curve to search for an effective configuration with low cost 

Our system selects a configuration with best AUG-E from a candidate list (hand-picked through extensive 
offline experiments) for future pseudo labeling. 25/35



Evaluation: Setup

• Implementation
• FedNLP[1]

• PET[2]

• Setups
• 2 devices (TX2, RPI 4B)
• 2 models (RoBERTa-base & large)
• 4 datasets

• Baselines
1. Vanilla Fine-Tuning (FedCLS)
2. Vanilla Few-shot Tuning (FedFSL)
3. Vanilla Few-shot Tuning + Bias-tuning

(FedFSL-BIAS)

[1] Yuchen Lin B, He C, Zeng Z, et al. FedNLP: Benchmarking Federated Learning Methods for 
Natural Language Processing Tasks[J]. Findings of NAACL, 2022.
[2] Schick T, Schütze H. Exploiting Cloze-Questions for Few-Shot Text Classification and 
Natural Language Inference[C]//Proceedings of the 16th Conference of the European 
Chapter of the Association for Computational Linguistics: Main Volume. 2021: 255-269.
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Figure 7: Comparing our approach of co-planning the
tuned layer depth and capacity to traditional ones.

bottleneck that vanilla bias-tuning could not handle. In con-
trast, freezing the top layers can reduce the elapsed training
time per round by 6.0⇥ on RPI4B because it brings linear
computation reduction.

Co-planning the tuned layer depth and capacity To
balance the compute and network, FeS carefully controls
both the layer depth and capacity. Simply applying both
techniques, i.e., freezing some layers and updating the bias
of the rest layers, does not fully exploit the potential of them.
Instead, we propose a mixed depth/capacity tuning para-
digm shown in Figure 7: trains very few top layers with
full capacity; trains a few middle layers with reduced capac-
ity (i.e., only bias updated); freezes the other bottom layers.
The rationale of such a terraced design is that, the layer
closer to the output encodes more downstream knowledge
which can be extracted with limited data labels. The con-
crete tuning decision is done o�ine on cloud. Speci�cally,
we use a FedFSL simulator that uses binary search to iden-
tify the optimal con�guration. The simulator takes three
types of input: pre-trained model; datasets, which could be
a public one with similar classi�cation di�culty to the pri-
vate dataset distributed across clients; the estimated FedFSL
runtime parameters including on-device training time and
network bandwidth.

In comparison, a random scheme often results in low con-
vergence accuracy or high resource costs due to either freez-
ing too many or too few layers. For instance, when consider-
ing the AGNEWS dataset, compared to our cherry-picked plan
(where we freeze 23 out of 24 layers, excluding only the bias
of layers 16–23), freezing all 23 layers leads to a signi�cant
4.1% accuracy loss, while freezing just 16 layers incurs a
slowdown of 13.8⇥ to achieve only a marginal accuracy gain.
Integrationwith other parameter-e�cient�ne-tuning
methods Enormous parameter-e�cient �ne-tuning meth-
ods are o�-the-shelf to �ne-tune large language models, such
as adapter [16, 65], LoRA [36, 39], etc. Our system already in-
cludes one popular technique: bit�t [103], that greatly saves
tunable parameters while preserving the few-shot ability
of large language models [59]. Other parameter-e�cient
�ne-tuning methods could also interplay our co-planning
schedule and reap bene�ts. For instance, adapters could be

Dataset AGNEWS [108] MNLI [89] YAHOO [108] YELP-F [108]
# Training 120k 392.7k 1.4M 650k
# Test 7.6k 9.8k 60k 50k

# Clients 100 1000 1000 1000
# Labels 64 64 64 64

Distribution Skewed Uniform Skewed Skewed
Prompt a ____ b a ?____, b Category: a ____ b It was ____. a

Table 2: Evaluation datasets. Label quantity of each
class follows prior work [102] where U = 1. Please note
that 64 is the total number of labels across clients, not
per client.

Setup Labeling Training
Pacing Optimization Method Optimization

FedCLS / / Head-based /
FedFSL Static / Prompt-based /

FedFSL-BIAS Static / Prompt-based Bias-only tuning

FeS (Ours)
Curriculum

(§3.1)
Filtering
(§3.2)

Prompt-based
(§2.2)

Depth/Capacity
Co-planning (§3.3)

Table 3: Summary of baselines used in experiments.

utilized to �ne-tune the middle layers with reduced capac-
ity, while �ne-tuning the very top layers with full capacity,
which will not only lead to high parameter-e�ciency but
also high computation-e�ciency.

4 EVALUATION
We evaluate FeS to answer the following key questions: 1)
How much performance improvement (in terms of time-to-
accuracy and relative model accuracy) does FeS achieve? 2)
How much performance improvement does FeS achieves
across di�erent number of gold labels? 3) How much per-
formance improvement does each component of FeS con-
tribute? 4) How much resource does FeS save?

4.1 Implementation and Setup
FeS prototype We have fully implemented the FeS pro-
totype atop PET [71] and FedNLP [102]. PET is a popular
prompt learning framework for NLP tasks. FedNLP is the
state-of-the-art framework for evaluating NLP tasks under
federated setting. As prior work [13], we adopt the parameter
server (PS) architecture among the clients and central server.
The on-device training and inference performance is tested
with PyTorch 1.10, and then plugged into FedNLP frame-
work. The models trained through prompt learning will be
collected in the central server and aggregated through Fe-
dAvg [61] algorithm, which is also the default setting in prior
FedNLP literature [102]. Both pseudo labeling and prompt
learning randomly select clients for labeling and training per
round.
BaselinesWe compare FeS to the following alternatives and
the key di�erences are summarized in Table 3. (1) FedCLS is
the vanilla federated �ne-tuning method without optimiza-
tions [22, 70]. It trains only with the limited gold labels. (2)
FedFSL implements pseudo labeling and prompt learning but
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time per round by 6.0⇥ on RPI4B because it brings linear
computation reduction.
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both the layer depth and capacity. Simply applying both
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(where we freeze 23 out of 24 layers, excluding only the bias
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4.1% accuracy loss, while freezing just 16 layers incurs a
slowdown of 13.8⇥ to achieve only a marginal accuracy gain.
Integrationwith other parameter-e�cient�ne-tuning
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ods are o�-the-shelf to �ne-tune large language models, such
as adapter [16, 65], LoRA [36, 39], etc. Our system already in-
cludes one popular technique: bit�t [103], that greatly saves
tunable parameters while preserving the few-shot ability
of large language models [59]. Other parameter-e�cient
�ne-tuning methods could also interplay our co-planning
schedule and reap bene�ts. For instance, adapters could be
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# Training 120k 392.7k 1.4M 650k
# Test 7.6k 9.8k 60k 50k

# Clients 100 1000 1000 1000
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Table 2: Evaluation datasets. Label quantity of each
class follows prior work [102] where U = 1. Please note
that 64 is the total number of labels across clients, not
per client.

Setup Labeling Training
Pacing Optimization Method Optimization
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FedFSL Static / Prompt-based /
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FeS (Ours)
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Filtering
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Prompt-based
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Table 3: Summary of baselines used in experiments.

utilized to �ne-tune the middle layers with reduced capac-
ity, while �ne-tuning the very top layers with full capacity,
which will not only lead to high parameter-e�ciency but
also high computation-e�ciency.

4 EVALUATION
We evaluate FeS to answer the following key questions: 1)
How much performance improvement (in terms of time-to-
accuracy and relative model accuracy) does FeS achieve? 2)
How much performance improvement does FeS achieves
across di�erent number of gold labels? 3) How much per-
formance improvement does each component of FeS con-
tribute? 4) How much resource does FeS save?

4.1 Implementation and Setup
FeS prototype We have fully implemented the FeS pro-
totype atop PET [71] and FedNLP [102]. PET is a popular
prompt learning framework for NLP tasks. FedNLP is the
state-of-the-art framework for evaluating NLP tasks under
federated setting. As prior work [13], we adopt the parameter
server (PS) architecture among the clients and central server.
The on-device training and inference performance is tested
with PyTorch 1.10, and then plugged into FedNLP frame-
work. The models trained through prompt learning will be
collected in the central server and aggregated through Fe-
dAvg [61] algorithm, which is also the default setting in prior
FedNLP literature [102]. Both pseudo labeling and prompt
learning randomly select clients for labeling and training per
round.
BaselinesWe compare FeS to the following alternatives and
the key di�erences are summarized in Table 3. (1) FedCLS is
the vanilla federated �ne-tuning method without optimiza-
tions [22, 70]. It trains only with the limited gold labels. (2)
FedFSL implements pseudo labeling and prompt learning but

64 labels in total 
instead of per client
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260×

Evaluation: End-to-end Performance

• Our system significantly speeds up model convergence at high accuracy.

Table 1: The final convergence accuracy (“Conv. Acc.”) and the elapsed training time (“Time-to-
acc”) to reach different relative accuracy. “acc1”/“acc2” are the final convergence accuracy of 
FedFSL/FedFSL-BIAS, respectively. “X” means the accuracy cannot be achieved.
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(a) RoBERTa-large [58]

(b) RoBERTa-base [58]
Figure 8: Overall Performance of FeS and baselines. Device: Jetson TX2.

Dataset AGNEWS MNLI YAHOO YELP-F
Time-to-acc (hr) Time-to-acc (hr) Time-to-acc (hr) Time-to-acc (hr)
TX2 RPI TX2 RPI TX2 RPI TX2 RPIPerf. Conv.

Acc. acc1 acc2 acc1 acc2

Conv.
Acc. acc1 acc2 acc1 acc2

Conv.
Acc. acc1 acc2 acc1 acc2

Conv.
Acc. acc1 acc2 acc1 acc2

FedCSL 27.9% X X X X 37.3% X X X X 34.6% X X X X 35.7% X X X X
FedFSL 92.5% 3.3 3.3 50.0 50.0 74.1% 9.2 X 137.5 X 84.3% 8.3 X 125.0 X 75.3% 2.1 X 31.3 X

FedFSL-BIAS 92.5% 1.7 1.7 25.0 25.0 88.1% 0.5 11.7 7.5 175.0 85.9% 3.3 5.3 50.0 80.0 79.4% 0.2 2.1 2.5 10.4
Ours 95.9% 0.4 0.4 5.5 5.5 92.2% 0.2 0.8 2.5 12.5 88.5% 0.3 0.7 5.0 10.0 86.8% 0.1 0.5 1.3 7.5

Table 4: The �nal convergence accuracy (“Conv. Acc.”) and the elapsed training time (“Time-to-acc”) to reach
di�erent relative accuracy. NLP model: RoBERT-large. “acc1”/“acc2” are the �nal convergence accuracy of
FedFSL/FedFSL-BIAS, respectively. “X” means the accuracy cannot be achieved.

(a) AGNEWS (b) MNLI
Figure 9: FeS outperforms baselines under all net-
work bandwidths to reach the convergence accuracy
of FedFSL.

4.3 Impacts of Initial Gold Labels
We vary the initial data labels and compare the performance
of FeS to baselines on two datasets: AGNEWS and YAHOO. As
shown in Figure 10a, FeS performs on par with or slightly
higher than FedFSL in terms of relative accuracy from 0–
1024 initial data labels, which is up to 64.1% higher than
FedCLS. In some cases, FeS achieves satisfactory zero-shot
performance, e.g., 95.2% relative accuracy on AGNEWS while
FedCSL only reaches 31.1%. This observation paves the way
for future research on zero-shot learning in mobile NLP.
Furthermore, FeS also signi�cantly reduces the end-to-end

convergence time under various initial data labels. For a fair
comparison, we only compare FedFSL and FeS that perform
alike. As shown in Figure 10b, to reach the same accuracy,
FeS reduces the elapsed training time by up to 18.3⇥ and
17.1⇥ on AGNEWS and YAHOO, respectively.

4.4 Signi�cance of Key Designs
We perform an ablation study to understand the contribution
of each key technique of FeS presented in §3. As shown in
Figure 11, we �nd each of them signi�cantly contributes to
the results: (1) The co-planning of training depth and capacity
reduces the convergence time by 8.0⇥–62.3⇥ on di�erent
datasets. The signi�cant improvement comes from that most
of bottom layers (up to 66.7% on AGNEWS) are skipped, which
reduces the training latency linearly. Some middle layers (up
to 33.3%) are tuned with reduced capacity, and thus reduces
the network tra�c. (2)With themodel optimized for training,
we observe the pseudo labeling accounts for more than 70%
of the total computation cost. The representative diversity
mechanism �lters out up to 95% of the data, further reducing
the training time by 1.2⇥–3.5⇥. (3) Curriculum pacing further
reduces the training time by 1.6⇥–3.5⇥ by selecting a (sub-
)optimal pacing con�guration.

68.0%
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Evaluation: Key deign

• Our key designs contribute to the results significantly.

Fig. 1: Model convergence delays with and without Our system’s key designs, showing their 
significance. DC: training depth/capacity co-planning; RF: representative filtering; CP: curriculum 
pacing.

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Dongqi Cai, Shangguang Wang, Yaozong Wu, Felix Xiaozhu Lin, and Mengwei Xu

(a) Convergence accuracy (b) Training time
Figure 10: The training accuracy (a) and training time (b) with di�erent number of gold labels.

Figure 11: Model convergence delays with and with-
out FeS’s key designs, showing their signi�cance. DC:
training depth/capacity co-planning; RF: representa-
tive �ltering; CP: curriculum pacing.

Figure 12: The total energy consumption of all clients,
normalized to that of FedCLS.

Figure 13: The total network tra�c of all clients.

4.5 Client Resource Cost
Energy consumption Figure 12 illustrates the average en-
ergy consumed during mobile NLP training tasks on each
device. It shows that FeS saves the energy consumption re-
markably, e.g., 7.7⇥–41.2⇥ reduction compared to FedFSL
and 6.4⇥–18.0⇥ reduction compared to FedFSL-BIAS. This
improvement comes from the reduced network transmission
time, the on-device training/labeling computations, and the
cherry-picked orchestrating pace.
Network tra�c Figure 13 reports the total network tra�c
incurred during �ne-tuning to reach the convergence accu-
racy of FedFSL. It shows that FeS saves 1841.7⇥ on average
and up to 3000.0⇥ (reducing from 224.6 GB to 0.04 GB) net-
work tra�c compared to FedFSL on four datasets. Please

note that reducing the network tra�c not only speeds up
the convergence, but also mitigates the overhead on clients
and the monetary cost to FL developers. The cost is billed
by the amount of data transmitted on public cloud platforms
such as AWS [5], which charges $0.01/GB.
Memory footprint As shown in Figure 14, our training
depth and capacity co-planning mechanism can reduce the
memory footprint by 4.3–4.5 times, which is crucial for prac-
tical deployment on mobile devices. For example, FedFSL
requires 10.4 GB memory5 to train RoBERTa-large, which
is 2.4⇥ higher than training RoBERTa-base. This excessive
memory requirementwould lead to out-of-memory and train-
ing failure on mobile devices which typically have only 8GB
RAM. FedFSL-BIAS reduces the memory usage of training
RoBERTa-large to 5.8 GB, which is still too large for mobile
devices. Because it only bypasses the memory bottleneck
of the weight update, but not the intermediate activations
which is the main memory bottleneck [18]. In comparison,
FeS only requires 2.3 GB memory due to the shallow training
depth and greatly saved intermediate activations.
Remark Training can be donewhen no user interactions are
present, e.g. when phone is idle/charged overnight which is
nearly a “clean” environment without other co-running appli-
cations to share memory. Moreover, memory ine�ciency can
be compensated with acceptable training overhead through
advanced memory optimizations such as batch splitting and
model weight caching [85]. During the end-to-end conver-
gence, which typically takes between 0.1 to 0.8 hours, each
device typically engages in a few rounds of training, with
each round lasting only a few tens of seconds. As a result,
FeS shall not compromise user experience.

5 RELATEDWORK
Few-shot learning (FSL) and FedFSL FSL has been one
of the hottest topics in machine learning research, as it is
considered more akin to how human intelligence works [29,
67, 75, 77, 87]. FeS identi�es two complementary algorith-
mic blocks, i.e., pseudo labeling [8, 19, 49, 104] and prompt
learning [56], and demonstrates satisfactory accuracy un-
der federated context. Prior work [40] introduced iterative

5Tested on a central server.

2.9×

13.8×

1.2×

3.5×

20.1×

2.6×

1.3×

8.0×

3.5×
1.6×

62.3×

1.8×
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Evaluation: System Cost

Our system is resource-efficient.
• It saves up to 3000.0× network traffic. (Fig. 1)
• It reduces up to 41.2× energy consumption. (Fig. 2)
• It reduces the memory usage by 4.5×. (Fig. 3)

Fig. 1:  The total network traffic of all clients.

Fig. 2:  The total energy consumption of all 
clients, normalized to that of ours

Fig. 3: Memory footprint of on-device training.
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Figure 10: The training accuracy (a) and training time (b) with di�erent number of gold labels.
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by the amount of data transmitted on public cloud platforms
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such as AWS [5], which charges $0.01/GB.
Memory footprint As shown in Figure 14, our training
depth and capacity co-planning mechanism can reduce the
memory footprint by 4.3–4.5 times, which is crucial for prac-
tical deployment on mobile devices. For example, FedFSL
requires 10.4 GB memory5 to train RoBERTa-large, which
is 2.4⇥ higher than training RoBERTa-base. This excessive
memory requirementwould lead to out-of-memory and train-
ing failure on mobile devices which typically have only 8GB
RAM. FedFSL-BIAS reduces the memory usage of training
RoBERTa-large to 5.8 GB, which is still too large for mobile
devices. Because it only bypasses the memory bottleneck
of the weight update, but not the intermediate activations
which is the main memory bottleneck [18]. In comparison,
FeS only requires 2.3 GB memory due to the shallow training
depth and greatly saved intermediate activations.
Remark Training can be donewhen no user interactions are
present, e.g. when phone is idle/charged overnight which is
nearly a “clean” environment without other co-running appli-
cations to share memory. Moreover, memory ine�ciency can
be compensated with acceptable training overhead through
advanced memory optimizations such as batch splitting and
model weight caching [85]. During the end-to-end conver-
gence, which typically takes between 0.1 to 0.8 hours, each
device typically engages in a few rounds of training, with
each round lasting only a few tens of seconds. As a result,
FeS shall not compromise user experience.

5 RELATEDWORK
Few-shot learning (FSL) and FedFSL FSL has been one
of the hottest topics in machine learning research, as it is
considered more akin to how human intelligence works [29,
67, 75, 77, 87]. FeS identi�es two complementary algorith-
mic blocks, i.e., pseudo labeling [8, 19, 49, 104] and prompt
learning [56], and demonstrates satisfactory accuracy un-
der federated context. Prior work [40] introduced iterative

5Tested on a central server.
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Figure 14: Memory footprint of on-device training.

pseudo labeling into prompt learning for centralized training
of vision-language model, but it employed a �xed iterative
pace that could result in poor federated performance, as we
have demonstrated. Our harsh but practical assumptions
of highly scare and skewed data labels invalidates existing
FedFSL methods [23, 25, 26, 41, 101, 109], which assume at
least 4% of the data to be uniformly labeled across clients.
As far as we know, FeS achieves the state-of-the-art per-
formance in the FedFSL scenario. At system aspect, FSL is
generally considered lightweight due to fewer rounds of
training [20, 25, 31, 107]. However, we show that the cost
could be substantial in FL due to the use of the pseudo la-
beling (requiring on-device inference) and prompt learning
(requiring large NLP models). We are the �rst to tackle these
system challenges and enable practical FedFSL.
Large language model (LLMs) Few-shot prompt tuning
on LLMs such as GPT-3 [15] can rival the performance of
fully-supervised medium-size models like RoBERTa [58].
However, these models are too large (e.g., 175B+ parame-
ters for GPT-3) to be deployed on devices after training, and
deploying them on the cloud leads to privacy concerns [3, 79]
and network delays [34, 95]. We pioneer practical federated
prompt tuning, allowing resource-constrained devices to
achieve comparable few-shot performance while preserving
privacy and supporting o�ine inference.
FedNLP aims to achieve both high accuracy and privacy
preservation in NLP model �ne-tuning. Recently, there are
a few literature investigating its implications, but mostly at
the algorithm aspect. [102] builds a benchmark for popu-
lar FedNLP tasks and datasets in a standard FL work�ow.
[10] enhances the privacy of FedNLP by orchestrating with
di�erential privacy. SEFL [84] eliminates the need for the
trusted entities and is resilient to client dropouts in FedNLP
tasks. Those work are orthogonal to FeS. [16] is the only
work that we are aware of that tackles with huge system
cost of FedNLP. It proposes a FedNLP framework based on
lightweight, automatically con�gured adapters at runtime.
However, the adapter cannot be applied in few-shot NLP
scenarios according to our experiments.
FL system optimizations The huge resource cost of cross-
device FL has been well recognized by the research commu-
nity. In respond, lots of e�orts have been invested, including

communication e�ciency optimizations [13, 96], model com-
pression/quantization [11, 91], client/data sampling [47, 50–
52, 62, 86, 94, 110], and on-device training speedup [85, 92].
Instead, FeS addresses unique challenges raised by the few-
shot scenarios: pacing between pseudo labeling and training;
�ltering redundant unlabeled data for pseudo labeling. The
design of FeS is mostly compatible with most optimizations
above as its FL training is loosely coupled with the pseudo
labeling.
Attacks in FL It is well known that FL cannot fully guaran-
tee privacy preservation, e.g., extraction attacks [9, 21, 111].
However, dropout, a common training technique used in
ML, is proven to be very e�ective to defend against those
attacks [21]. Moreover, [111] demonstrates that most at-
tacks su�er a signi�cant decrease in success ratio when
training batch sizes are set greater than 1. Apart from that,
most data extraction attacks tend to be extremely resource-
intensive [9, 21, 111]. Though larger models leak more in-
formation than the smaller ones, it incur larger inversion
cost either (e.g., about 1672.52s for reconstructing one sen-
tence [111]). FeS avoids revealing training data and raises
the barrier for attackers (i.e. it requires much higher attack
capability and much longer time). Furthermore, integrat-
ing various privacy-preserving techniques, such as di�er-
ential privacy [10] and secure aggregation [14], can further
enhance the security of FL. FeS is parameter-e�cient and
thereby shall be easy to integrate with them.

6 CONCLUSIONS
FeS is a FedFSL framework that enables practical few-shot
NLP �ne-tuning on federated mobile devices. At algorithm
aspect, it incorporates pseudo labeling and prompt learning
to achieve usable accuracy with only tens of data labels. At
system aspect, it proposes three novel techniques, i.e., by pac-
ing training and labeling, early �ltering unlabeled data, and
reducing the tuning depth/capacity, to address the unique
challenge of huge resource cost raised by its algorithmic
foundation. On extensive experiments, FeS shows superior
system performance over existing approaches.
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Conclusion
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federated mobile devices.
• It incorporates pseudo labeling and prompt learning to achieve usable accuracy with 

only tens of data labels.
• At system aspect,  it proposes three novel techniques, i.e., early filtering unlabeled data, 

reducing the tuning depth/capacity, and curriculum orchestrate them to address the 
unique challenge of huge resource cost raised by its algorithmic.
• Compared to vanilla FedFSL, Our system reduces the training delay, client energy, and 

network traffic by up to 46.0×, 41.2× and 3000.0×, respectively.
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Concluding Remarks by Mengwei
• The recent AI wave (large, foundational, multimodal

models) is going to make another Golden Era for mobile
computing.

- Think of Smartphones/IoTs as humans-level assistants
• Two key research directions

- Making LLMs run fast and learn rapidly on devices (hw-sw-algo.
codesign)

- Building killer apps atop LLMs (agents, searching, AIGC, etc)
• Open to collaboration and debate!

- Who are we: a junior faculty plus a group of passionate graduate
students who believe in LLM as a game changer to mobile
research

Generated by Stable Diffusion XL
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Different parameter-efficient methods

• Adapter is not only for ”adapters”.

• Parameter-efficient methods are unified (He, ICLR’22).

• Bias-tuning provides the best accuracy-efficiency tradeoff under few-
shot learning scenarios (Logan, ACL’22).

He, Junxian, et al. "Towards a Unified View of Parameter-Efficient Transfer Learning.", ICLR 2022.
Logan R L, et al. “Cutting Down on Prompts and Parameters: Simple Few-Shot Learning with Language Models”, ACL 2022.
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Preliminary: FedFSL performance and cost

• Excessive on-device inference.
• Prompt learning needs large NLP model.
• Sophisticated orchestration workflow.
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other: pseudo labeling heavily relies on the initial model accu-
racy to get enough, correct labels, for which prompt learning
can help; in turn, prompt learning’s ability is limited to the
few number of data labels and especially their skewed distri-
bution, for which pseudo labeling can help. Therefore, we
construct an enhanced FedFSL work�ow by orchestrating
the two techniques atop FedNLP, shown in Fig. 2. This en-
hanced work�ow is the algorithmic foundation of our future
design, and is still dubbed as FedFSL for simplicity.

Our goal is to �ne-tune a pre-trained language model M
based on distributed clients’ data. We assume that each client
has a tiny training set with labels T (typically < 10) and a
much larger set of unlabeled samples D (typically > 1000).
In general, FeS consists of two loosely-coupled runtimes
residing in a central server.
• Inference runtime that continously generates new pseudo
labels on clients. Per 5 training rounds, it dispatches the
global M to = clients, where the model exhaustively infer-
ences on each local unlabeled data Ĝ 2 ⇡ and generates a
pseudo label ~̂. The data with the top : highest con�dence
(i.e., ;>68CB) are added as training samples. In subsequent
training rounds, pseudo labels are treated equally as the
gold labels. The pseudo labels that are generated in pre-
vious rounds will also be re-labeled to avoid forgetting
events [80]. The above hyper-parameters < 5 ,=,: > indi-
cate how inference runtime paces.

• Training runtime that follows a typical federated learn-
ing work�ow to �ne-tune M . Per round, the runtime
dispatches the global M to a random set of clients with
at least one gold or pseudo label. The on-device train-
ing is assisted with prompts, provided by the trainers ei-
ther in hand-crafted or automatic manner [28, 30, 55–57].
The updated models are then aggregated (default FedAvg
protocol [61]) on the server as the new global M . The
process continues till M reaches a satisfactory accuracy.
Notably, such a design is compatible with prior FL lit-
erature on client/data sampling [47, 50–52, 94], privacy
enhancements [24, 105], and communication optimiza-
tion [6, 88, 91].

2.4 Experimental Observations
Based on the FedFSL work�ow presented above, we perform
a set of early experiments on its performance. The results
highlight the two sides of a coin: a satisfactory model accu-
racy yet huge resource cost on clients.
Observation-1: FedFSL achieves satisfactory accuracy with

scarce data labels; for which both pseudo labeling and prompt
learning are indispensable. Table 1 shows the convergence
accuracy of RoBERTa-large [58] on 4 popular NLP datasets3.
With only 64 data labels (0.005%–0.05% of the total dataset),
3You can �nd a detailed description of the datasets in §4.1.

Dataset Full-set
(oracle)

Vanilla-
FedFSL

Prompt-
Only

Pseudo-
Only

Both
(Ours)

AGNEWS (skewed) 93.0 64.8±3.1 68.4±2.4 67.5±1.3 90.2±0.5
MNLI (skewed) 85.0 37.7±5.6 42.4±5.8 42.7±6.3 77.4±1.2
YAHOO (skewed) 78.0 24.4±10.3 41.8±4.3 31.0±2.0 66.9±1.1
YELP-F (skewed) 70.0 38.3±8.8 51.2±1.8 45.7±4.4 58.2±2.4
YELP-F (uniform) 70.0 54.0±0.1 58.1±1.5 57.0±2.2 61.9±0.7

Table 1: Convergence accuracy with 64 gold labels.
“Full-Set” assumes every data is labeled (an oracle
case). “skewed” means the gold labels are located on
few clients instead of uniformly distributed across
clients.
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Figure 3: FedFSL convergence performance with dif-
ferent models and datasets. Batch size: 4.

FedFSL achieves 85.8%–97.0% relatively convergence accu-
racy to the full-set �ne-tuning that assumes all data samples
are labeled. The accuracy could be further boosted by involv-
ing more data labels. Neither pseudo labeling nor prompt
learning alone is enough to exhibit a usable accuracy. With
only one of them, the relative convergence accuracy is 40%–
74%. Furthermore, the skewed label distribution challenges
the task: on YELP-F, a vanilla FedNLP method results in
much higher accuracy when the labels are uniformaly dis-
tributed; neverthelss, the challenge is mostly addressed by
FedFSL that achieves satisfactory accuracy in both cases.
Observation-2: FedFSL incurs huge system cost. Our exper-

iments highlight the excessive system cost (Figure 3), as
against the commonsense that few-shot learning is usually
fast and lightweight [20, 25, 31, 107]. For example, training
RoBERTa-large on AGNEWS takes 3.3 hours to converge, 7.3
million Joules of energy, 68.4 GBs of network transmission,
and 10.4 GB peak memory. The cost is about 1.4⇥ higher than
a full-set supervised FedNLP process on the same model and
dataset. We then dive deeper into the implications behind
and identify three challenges for a resource-e�cient FedFSL
system.

• Orchestrating training and inference FedFSL has
two coupled components: a federated learning runtime that
continuously updates a global model; an inference runtime
that keeps generating pseudo labels. The two components
must be paced harmoniously: the inference runtime gener-
ating too few pseudo labels could slow down the training;
otherwise, generating too many pseudo labels could lead to
resource waste or even excessive erroneous labels, especially
when the global model is still weak. A mechanism to orches-
trate the two components must be dynamic to �t the model
learning progress.
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other: pseudo labeling heavily relies on the initial model accu-
racy to get enough, correct labels, for which prompt learning
can help; in turn, prompt learning’s ability is limited to the
few number of data labels and especially their skewed distri-
bution, for which pseudo labeling can help. Therefore, we
construct an enhanced FedFSL work�ow by orchestrating
the two techniques atop FedNLP, shown in Fig. 2. This en-
hanced work�ow is the algorithmic foundation of our future
design, and is still dubbed as FedFSL for simplicity.

Our goal is to �ne-tune a pre-trained language model M
based on distributed clients’ data. We assume that each client
has a tiny training set with labels T (typically < 10) and a
much larger set of unlabeled samples D (typically > 1000).
In general, FeS consists of two loosely-coupled runtimes
residing in a central server.
• Inference runtime that continously generates new pseudo
labels on clients. Per 5 training rounds, it dispatches the
global M to = clients, where the model exhaustively infer-
ences on each local unlabeled data Ĝ 2 ⇡ and generates a
pseudo label ~̂. The data with the top : highest con�dence
(i.e., ;>68CB) are added as training samples. In subsequent
training rounds, pseudo labels are treated equally as the
gold labels. The pseudo labels that are generated in pre-
vious rounds will also be re-labeled to avoid forgetting
events [80]. The above hyper-parameters < 5 ,=,: > indi-
cate how inference runtime paces.

• Training runtime that follows a typical federated learn-
ing work�ow to �ne-tune M . Per round, the runtime
dispatches the global M to a random set of clients with
at least one gold or pseudo label. The on-device train-
ing is assisted with prompts, provided by the trainers ei-
ther in hand-crafted or automatic manner [28, 30, 55–57].
The updated models are then aggregated (default FedAvg
protocol [61]) on the server as the new global M . The
process continues till M reaches a satisfactory accuracy.
Notably, such a design is compatible with prior FL lit-
erature on client/data sampling [47, 50–52, 94], privacy
enhancements [24, 105], and communication optimiza-
tion [6, 88, 91].

2.4 Experimental Observations
Based on the FedFSL work�ow presented above, we perform
a set of early experiments on its performance. The results
highlight the two sides of a coin: a satisfactory model accu-
racy yet huge resource cost on clients.
Observation-1: FedFSL achieves satisfactory accuracy with

scarce data labels; for which both pseudo labeling and prompt
learning are indispensable. Table 1 shows the convergence
accuracy of RoBERTa-large [58] on 4 popular NLP datasets3.
With only 64 data labels (0.005%–0.05% of the total dataset),
3You can �nd a detailed description of the datasets in §4.1.

Dataset Full-set
(oracle)

Vanilla-
FedFSL

Prompt-
Only

Pseudo-
Only

Both
(Ours)

AGNEWS (skewed) 93.0 64.8±3.1 68.4±2.4 67.5±1.3 90.2±0.5
MNLI (skewed) 85.0 37.7±5.6 42.4±5.8 42.7±6.3 77.4±1.2
YAHOO (skewed) 78.0 24.4±10.3 41.8±4.3 31.0±2.0 66.9±1.1
YELP-F (skewed) 70.0 38.3±8.8 51.2±1.8 45.7±4.4 58.2±2.4
YELP-F (uniform) 70.0 54.0±0.1 58.1±1.5 57.0±2.2 61.9±0.7

Table 1: Convergence accuracy with 64 gold labels.
“Full-Set” assumes every data is labeled (an oracle
case). “skewed” means the gold labels are located on
few clients instead of uniformly distributed across
clients.

Figure 3: FedFSL convergence performance with dif-
ferent models and datasets. Batch size: 4.

FedFSL achieves 85.8%–97.0% relatively convergence accu-
racy to the full-set �ne-tuning that assumes all data samples
are labeled. The accuracy could be further boosted by involv-
ing more data labels. Neither pseudo labeling nor prompt
learning alone is enough to exhibit a usable accuracy. With
only one of them, the relative convergence accuracy is 40%–
74%. Furthermore, the skewed label distribution challenges
the task: on YELP-F, a vanilla FedNLP method results in
much higher accuracy when the labels are uniformaly dis-
tributed; neverthelss, the challenge is mostly addressed by
FedFSL that achieves satisfactory accuracy in both cases.
Observation-2: FedFSL incurs huge system cost. Our exper-

iments highlight the excessive system cost (Figure 3), as
against the commonsense that few-shot learning is usually
fast and lightweight [20, 25, 31, 107]. For example, training
RoBERTa-large on AGNEWS takes 3.3 hours to converge, 7.3
million Joules of energy, 68.4 GBs of network transmission,
and 10.4 GB peak memory. The cost is about 1.4⇥ higher than
a full-set supervised FedNLP process on the same model and
dataset. We then dive deeper into the implications behind
and identify three challenges for a resource-e�cient FedFSL
system.

• Orchestrating training and inference FedFSL has
two coupled components: a federated learning runtime that
continuously updates a global model; an inference runtime
that keeps generating pseudo labels. The two components
must be paced harmoniously: the inference runtime gener-
ating too few pseudo labels could slow down the training;
otherwise, generating too many pseudo labels could lead to
resource waste or even excessive erroneous labels, especially
when the global model is still weak. A mechanism to orches-
trate the two components must be dynamic to �t the model
learning progress.
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other: pseudo labeling heavily relies on the initial model accu-
racy to get enough, correct labels, for which prompt learning
can help; in turn, prompt learning’s ability is limited to the
few number of data labels and especially their skewed distri-
bution, for which pseudo labeling can help. Therefore, we
construct an enhanced FedFSL work�ow by orchestrating
the two techniques atop FedNLP, shown in Fig. 2. This en-
hanced work�ow is the algorithmic foundation of our future
design, and is still dubbed as FedFSL for simplicity.

Our goal is to �ne-tune a pre-trained language model M
based on distributed clients’ data. We assume that each client
has a tiny training set with labels T (typically < 10) and a
much larger set of unlabeled samples D (typically > 1000).
In general, FeS consists of two loosely-coupled runtimes
residing in a central server.
• Inference runtime that continously generates new pseudo
labels on clients. Per 5 training rounds, it dispatches the
global M to = clients, where the model exhaustively infer-
ences on each local unlabeled data Ĝ 2 ⇡ and generates a
pseudo label ~̂. The data with the top : highest con�dence
(i.e., ;>68CB) are added as training samples. In subsequent
training rounds, pseudo labels are treated equally as the
gold labels. The pseudo labels that are generated in pre-
vious rounds will also be re-labeled to avoid forgetting
events [80]. The above hyper-parameters < 5 ,=,: > indi-
cate how inference runtime paces.

• Training runtime that follows a typical federated learn-
ing work�ow to �ne-tune M . Per round, the runtime
dispatches the global M to a random set of clients with
at least one gold or pseudo label. The on-device train-
ing is assisted with prompts, provided by the trainers ei-
ther in hand-crafted or automatic manner [28, 30, 55–57].
The updated models are then aggregated (default FedAvg
protocol [61]) on the server as the new global M . The
process continues till M reaches a satisfactory accuracy.
Notably, such a design is compatible with prior FL lit-
erature on client/data sampling [47, 50–52, 94], privacy
enhancements [24, 105], and communication optimiza-
tion [6, 88, 91].

2.4 Experimental Observations
Based on the FedFSL work�ow presented above, we perform
a set of early experiments on its performance. The results
highlight the two sides of a coin: a satisfactory model accu-
racy yet huge resource cost on clients.
Observation-1: FedFSL achieves satisfactory accuracy with

scarce data labels; for which both pseudo labeling and prompt
learning are indispensable. Table 1 shows the convergence
accuracy of RoBERTa-large [58] on 4 popular NLP datasets3.
With only 64 data labels (0.005%–0.05% of the total dataset),
3You can �nd a detailed description of the datasets in §4.1.

Dataset Full-set
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FedFSL

Prompt-
Only
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Only

Both
(Ours)

AGNEWS (skewed) 93.0 64.8±3.1 68.4±2.4 67.5±1.3 90.2±0.5
MNLI (skewed) 85.0 37.7±5.6 42.4±5.8 42.7±6.3 77.4±1.2
YAHOO (skewed) 78.0 24.4±10.3 41.8±4.3 31.0±2.0 66.9±1.1
YELP-F (skewed) 70.0 38.3±8.8 51.2±1.8 45.7±4.4 58.2±2.4
YELP-F (uniform) 70.0 54.0±0.1 58.1±1.5 57.0±2.2 61.9±0.7

Table 1: Convergence accuracy with 64 gold labels.
“Full-Set” assumes every data is labeled (an oracle
case). “skewed” means the gold labels are located on
few clients instead of uniformly distributed across
clients.
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Figure 3: FedFSL convergence performance with dif-
ferent models and datasets. Batch size: 4.

FedFSL achieves 85.8%–97.0% relatively convergence accu-
racy to the full-set �ne-tuning that assumes all data samples
are labeled. The accuracy could be further boosted by involv-
ing more data labels. Neither pseudo labeling nor prompt
learning alone is enough to exhibit a usable accuracy. With
only one of them, the relative convergence accuracy is 40%–
74%. Furthermore, the skewed label distribution challenges
the task: on YELP-F, a vanilla FedNLP method results in
much higher accuracy when the labels are uniformaly dis-
tributed; neverthelss, the challenge is mostly addressed by
FedFSL that achieves satisfactory accuracy in both cases.
Observation-2: FedFSL incurs huge system cost. Our exper-

iments highlight the excessive system cost (Figure 3), as
against the commonsense that few-shot learning is usually
fast and lightweight [20, 25, 31, 107]. For example, training
RoBERTa-large on AGNEWS takes 3.3 hours to converge, 7.3
million Joules of energy, 68.4 GBs of network transmission,
and 10.4 GB peak memory. The cost is about 1.4⇥ higher than
a full-set supervised FedNLP process on the same model and
dataset. We then dive deeper into the implications behind
and identify three challenges for a resource-e�cient FedFSL
system.

• Orchestrating training and inference FedFSL has
two coupled components: a federated learning runtime that
continuously updates a global model; an inference runtime
that keeps generating pseudo labels. The two components
must be paced harmoniously: the inference runtime gener-
ating too few pseudo labels could slow down the training;
otherwise, generating too many pseudo labels could lead to
resource waste or even excessive erroneous labels, especially
when the global model is still weak. A mechanism to orches-
trate the two components must be dynamic to �t the model
learning progress.
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other: pseudo labeling heavily relies on the initial model accu-
racy to get enough, correct labels, for which prompt learning
can help; in turn, prompt learning’s ability is limited to the
few number of data labels and especially their skewed distri-
bution, for which pseudo labeling can help. Therefore, we
construct an enhanced FedFSL work�ow by orchestrating
the two techniques atop FedNLP, shown in Fig. 2. This en-
hanced work�ow is the algorithmic foundation of our future
design, and is still dubbed as FedFSL for simplicity.

Our goal is to �ne-tune a pre-trained language model M
based on distributed clients’ data. We assume that each client
has a tiny training set with labels T (typically < 10) and a
much larger set of unlabeled samples D (typically > 1000).
In general, FeS consists of two loosely-coupled runtimes
residing in a central server.
• Inference runtime that continously generates new pseudo
labels on clients. Per 5 training rounds, it dispatches the
global M to = clients, where the model exhaustively infer-
ences on each local unlabeled data Ĝ 2 ⇡ and generates a
pseudo label ~̂. The data with the top : highest con�dence
(i.e., ;>68CB) are added as training samples. In subsequent
training rounds, pseudo labels are treated equally as the
gold labels. The pseudo labels that are generated in pre-
vious rounds will also be re-labeled to avoid forgetting
events [80]. The above hyper-parameters < 5 ,=,: > indi-
cate how inference runtime paces.

• Training runtime that follows a typical federated learn-
ing work�ow to �ne-tune M . Per round, the runtime
dispatches the global M to a random set of clients with
at least one gold or pseudo label. The on-device train-
ing is assisted with prompts, provided by the trainers ei-
ther in hand-crafted or automatic manner [28, 30, 55–57].
The updated models are then aggregated (default FedAvg
protocol [61]) on the server as the new global M . The
process continues till M reaches a satisfactory accuracy.
Notably, such a design is compatible with prior FL lit-
erature on client/data sampling [47, 50–52, 94], privacy
enhancements [24, 105], and communication optimiza-
tion [6, 88, 91].

2.4 Experimental Observations
Based on the FedFSL work�ow presented above, we perform
a set of early experiments on its performance. The results
highlight the two sides of a coin: a satisfactory model accu-
racy yet huge resource cost on clients.
Observation-1: FedFSL achieves satisfactory accuracy with

scarce data labels; for which both pseudo labeling and prompt
learning are indispensable. Table 1 shows the convergence
accuracy of RoBERTa-large [58] on 4 popular NLP datasets3.
With only 64 data labels (0.005%–0.05% of the total dataset),
3You can �nd a detailed description of the datasets in §4.1.

Dataset Full-set
(oracle)

Vanilla-
FedFSL

Prompt-
Only

Pseudo-
Only

Both
(Ours)

AGNEWS (skewed) 93.0 64.8±3.1 68.4±2.4 67.5±1.3 90.2±0.5
MNLI (skewed) 85.0 37.7±5.6 42.4±5.8 42.7±6.3 77.4±1.2
YAHOO (skewed) 78.0 24.4±10.3 41.8±4.3 31.0±2.0 66.9±1.1
YELP-F (skewed) 70.0 38.3±8.8 51.2±1.8 45.7±4.4 58.2±2.4
YELP-F (uniform) 70.0 54.0±0.1 58.1±1.5 57.0±2.2 61.9±0.7

Table 1: Convergence accuracy with 64 gold labels.
“Full-Set” assumes every data is labeled (an oracle
case). “skewed” means the gold labels are located on
few clients instead of uniformly distributed across
clients.
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Figure 3: FedFSL convergence performance with dif-
ferent models and datasets. Batch size: 4.

FedFSL achieves 85.8%–97.0% relatively convergence accu-
racy to the full-set �ne-tuning that assumes all data samples
are labeled. The accuracy could be further boosted by involv-
ing more data labels. Neither pseudo labeling nor prompt
learning alone is enough to exhibit a usable accuracy. With
only one of them, the relative convergence accuracy is 40%–
74%. Furthermore, the skewed label distribution challenges
the task: on YELP-F, a vanilla FedNLP method results in
much higher accuracy when the labels are uniformaly dis-
tributed; neverthelss, the challenge is mostly addressed by
FedFSL that achieves satisfactory accuracy in both cases.
Observation-2: FedFSL incurs huge system cost. Our exper-

iments highlight the excessive system cost (Figure 3), as
against the commonsense that few-shot learning is usually
fast and lightweight [20, 25, 31, 107]. For example, training
RoBERTa-large on AGNEWS takes 3.3 hours to converge, 7.3
million Joules of energy, 68.4 GBs of network transmission,
and 10.4 GB peak memory. The cost is about 1.4⇥ higher than
a full-set supervised FedNLP process on the same model and
dataset. We then dive deeper into the implications behind
and identify three challenges for a resource-e�cient FedFSL
system.

• Orchestrating training and inference FedFSL has
two coupled components: a federated learning runtime that
continuously updates a global model; an inference runtime
that keeps generating pseudo labels. The two components
must be paced harmoniously: the inference runtime gener-
ating too few pseudo labels could slow down the training;
otherwise, generating too many pseudo labels could lead to
resource waste or even excessive erroneous labels, especially
when the global model is still weak. A mechanism to orches-
trate the two components must be dynamic to �t the model
learning progress.
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other: pseudo labeling heavily relies on the initial model accu-
racy to get enough, correct labels, for which prompt learning
can help; in turn, prompt learning’s ability is limited to the
few number of data labels and especially their skewed distri-
bution, for which pseudo labeling can help. Therefore, we
construct an enhanced FedFSL work�ow by orchestrating
the two techniques atop FedNLP, shown in Fig. 2. This en-
hanced work�ow is the algorithmic foundation of our future
design, and is still dubbed as FedFSL for simplicity.

Our goal is to �ne-tune a pre-trained language model M
based on distributed clients’ data. We assume that each client
has a tiny training set with labels T (typically < 10) and a
much larger set of unlabeled samples D (typically > 1000).
In general, FeS consists of two loosely-coupled runtimes
residing in a central server.
• Inference runtime that continously generates new pseudo
labels on clients. Per 5 training rounds, it dispatches the
global M to = clients, where the model exhaustively infer-
ences on each local unlabeled data Ĝ 2 ⇡ and generates a
pseudo label ~̂. The data with the top : highest con�dence
(i.e., ;>68CB) are added as training samples. In subsequent
training rounds, pseudo labels are treated equally as the
gold labels. The pseudo labels that are generated in pre-
vious rounds will also be re-labeled to avoid forgetting
events [80]. The above hyper-parameters < 5 ,=,: > indi-
cate how inference runtime paces.

• Training runtime that follows a typical federated learn-
ing work�ow to �ne-tune M . Per round, the runtime
dispatches the global M to a random set of clients with
at least one gold or pseudo label. The on-device train-
ing is assisted with prompts, provided by the trainers ei-
ther in hand-crafted or automatic manner [28, 30, 55–57].
The updated models are then aggregated (default FedAvg
protocol [61]) on the server as the new global M . The
process continues till M reaches a satisfactory accuracy.
Notably, such a design is compatible with prior FL lit-
erature on client/data sampling [47, 50–52, 94], privacy
enhancements [24, 105], and communication optimiza-
tion [6, 88, 91].

2.4 Experimental Observations
Based on the FedFSL work�ow presented above, we perform
a set of early experiments on its performance. The results
highlight the two sides of a coin: a satisfactory model accu-
racy yet huge resource cost on clients.
Observation-1: FedFSL achieves satisfactory accuracy with

scarce data labels; for which both pseudo labeling and prompt
learning are indispensable. Table 1 shows the convergence
accuracy of RoBERTa-large [58] on 4 popular NLP datasets3.
With only 64 data labels (0.005%–0.05% of the total dataset),
3You can �nd a detailed description of the datasets in §4.1.

Dataset Full-set
(oracle)

Vanilla-
FedFSL

Prompt-
Only

Pseudo-
Only

Both
(Ours)

AGNEWS (skewed) 93.0 64.8±3.1 68.4±2.4 67.5±1.3 90.2±0.5
MNLI (skewed) 85.0 37.7±5.6 42.4±5.8 42.7±6.3 77.4±1.2
YAHOO (skewed) 78.0 24.4±10.3 41.8±4.3 31.0±2.0 66.9±1.1
YELP-F (skewed) 70.0 38.3±8.8 51.2±1.8 45.7±4.4 58.2±2.4
YELP-F (uniform) 70.0 54.0±0.1 58.1±1.5 57.0±2.2 61.9±0.7

Table 1: Convergence accuracy with 64 gold labels.
“Full-Set” assumes every data is labeled (an oracle
case). “skewed” means the gold labels are located on
few clients instead of uniformly distributed across
clients.
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Figure 3: FedFSL convergence performance with dif-
ferent models and datasets. Batch size: 4.

FedFSL achieves 85.8%–97.0% relatively convergence accu-
racy to the full-set �ne-tuning that assumes all data samples
are labeled. The accuracy could be further boosted by involv-
ing more data labels. Neither pseudo labeling nor prompt
learning alone is enough to exhibit a usable accuracy. With
only one of them, the relative convergence accuracy is 40%–
74%. Furthermore, the skewed label distribution challenges
the task: on YELP-F, a vanilla FedNLP method results in
much higher accuracy when the labels are uniformaly dis-
tributed; neverthelss, the challenge is mostly addressed by
FedFSL that achieves satisfactory accuracy in both cases.
Observation-2: FedFSL incurs huge system cost. Our exper-

iments highlight the excessive system cost (Figure 3), as
against the commonsense that few-shot learning is usually
fast and lightweight [20, 25, 31, 107]. For example, training
RoBERTa-large on AGNEWS takes 3.3 hours to converge, 7.3
million Joules of energy, 68.4 GBs of network transmission,
and 10.4 GB peak memory. The cost is about 1.4⇥ higher than
a full-set supervised FedNLP process on the same model and
dataset. We then dive deeper into the implications behind
and identify three challenges for a resource-e�cient FedFSL
system.

• Orchestrating training and inference FedFSL has
two coupled components: a federated learning runtime that
continuously updates a global model; an inference runtime
that keeps generating pseudo labels. The two components
must be paced harmoniously: the inference runtime gener-
ating too few pseudo labels could slow down the training;
otherwise, generating too many pseudo labels could lead to
resource waste or even excessive erroneous labels, especially
when the global model is still weak. A mechanism to orches-
trate the two components must be dynamic to �t the model
learning progress.
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other: pseudo labeling heavily relies on the initial model accu-
racy to get enough, correct labels, for which prompt learning
can help; in turn, prompt learning’s ability is limited to the
few number of data labels and especially their skewed distri-
bution, for which pseudo labeling can help. Therefore, we
construct an enhanced FedFSL work�ow by orchestrating
the two techniques atop FedNLP, shown in Fig. 2. This en-
hanced work�ow is the algorithmic foundation of our future
design, and is still dubbed as FedFSL for simplicity.

Our goal is to �ne-tune a pre-trained language model M
based on distributed clients’ data. We assume that each client
has a tiny training set with labels T (typically < 10) and a
much larger set of unlabeled samples D (typically > 1000).
In general, FeS consists of two loosely-coupled runtimes
residing in a central server.
• Inference runtime that continously generates new pseudo
labels on clients. Per 5 training rounds, it dispatches the
global M to = clients, where the model exhaustively infer-
ences on each local unlabeled data Ĝ 2 ⇡ and generates a
pseudo label ~̂. The data with the top : highest con�dence
(i.e., ;>68CB) are added as training samples. In subsequent
training rounds, pseudo labels are treated equally as the
gold labels. The pseudo labels that are generated in pre-
vious rounds will also be re-labeled to avoid forgetting
events [80]. The above hyper-parameters < 5 ,=,: > indi-
cate how inference runtime paces.

• Training runtime that follows a typical federated learn-
ing work�ow to �ne-tune M . Per round, the runtime
dispatches the global M to a random set of clients with
at least one gold or pseudo label. The on-device train-
ing is assisted with prompts, provided by the trainers ei-
ther in hand-crafted or automatic manner [28, 30, 55–57].
The updated models are then aggregated (default FedAvg
protocol [61]) on the server as the new global M . The
process continues till M reaches a satisfactory accuracy.
Notably, such a design is compatible with prior FL lit-
erature on client/data sampling [47, 50–52, 94], privacy
enhancements [24, 105], and communication optimiza-
tion [6, 88, 91].

2.4 Experimental Observations
Based on the FedFSL work�ow presented above, we perform
a set of early experiments on its performance. The results
highlight the two sides of a coin: a satisfactory model accu-
racy yet huge resource cost on clients.
Observation-1: FedFSL achieves satisfactory accuracy with

scarce data labels; for which both pseudo labeling and prompt
learning are indispensable. Table 1 shows the convergence
accuracy of RoBERTa-large [58] on 4 popular NLP datasets3.
With only 64 data labels (0.005%–0.05% of the total dataset),
3You can �nd a detailed description of the datasets in §4.1.

Dataset Full-set
(oracle)

Vanilla-
FedFSL

Prompt-
Only

Pseudo-
Only

Both
(Ours)

AGNEWS (skewed) 93.0 64.8±3.1 68.4±2.4 67.5±1.3 90.2±0.5
MNLI (skewed) 85.0 37.7±5.6 42.4±5.8 42.7±6.3 77.4±1.2
YAHOO (skewed) 78.0 24.4±10.3 41.8±4.3 31.0±2.0 66.9±1.1
YELP-F (skewed) 70.0 38.3±8.8 51.2±1.8 45.7±4.4 58.2±2.4
YELP-F (uniform) 70.0 54.0±0.1 58.1±1.5 57.0±2.2 61.9±0.7

Table 1: Convergence accuracy with 64 gold labels.
“Full-Set” assumes every data is labeled (an oracle
case). “skewed” means the gold labels are located on
few clients instead of uniformly distributed across
clients.
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Figure 3: FedFSL convergence performance with dif-
ferent models and datasets. Batch size: 4.

FedFSL achieves 85.8%–97.0% relatively convergence accu-
racy to the full-set �ne-tuning that assumes all data samples
are labeled. The accuracy could be further boosted by involv-
ing more data labels. Neither pseudo labeling nor prompt
learning alone is enough to exhibit a usable accuracy. With
only one of them, the relative convergence accuracy is 40%–
74%. Furthermore, the skewed label distribution challenges
the task: on YELP-F, a vanilla FedNLP method results in
much higher accuracy when the labels are uniformaly dis-
tributed; neverthelss, the challenge is mostly addressed by
FedFSL that achieves satisfactory accuracy in both cases.
Observation-2: FedFSL incurs huge system cost. Our exper-

iments highlight the excessive system cost (Figure 3), as
against the commonsense that few-shot learning is usually
fast and lightweight [20, 25, 31, 107]. For example, training
RoBERTa-large on AGNEWS takes 3.3 hours to converge, 7.3
million Joules of energy, 68.4 GBs of network transmission,
and 10.4 GB peak memory. The cost is about 1.4⇥ higher than
a full-set supervised FedNLP process on the same model and
dataset. We then dive deeper into the implications behind
and identify three challenges for a resource-e�cient FedFSL
system.

• Orchestrating training and inference FedFSL has
two coupled components: a federated learning runtime that
continuously updates a global model; an inference runtime
that keeps generating pseudo labels. The two components
must be paced harmoniously: the inference runtime gener-
ating too few pseudo labels could slow down the training;
otherwise, generating too many pseudo labels could lead to
resource waste or even excessive erroneous labels, especially
when the global model is still weak. A mechanism to orches-
trate the two components must be dynamic to �t the model
learning progress.

Satisfactory accuracy

Huge system cost

Both pseudo labeling 
and prompt learning 
are indispensable.
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